Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 62, Issue 1, Pages 139–144
DOI: https://doi.org/10.1070/SM1989v062n01ABEH003231
(Mi sm2655)
 

A multidimensional generalization of the Gauss–Bonnet formula for vector fields in Euclidean space

Yu. A. Aminov
References:
Abstract: A unit vector field $n$ is considered, defined on some neighborhood $G$ in $(m+1)$-dimensional Euclidean space $E^{m+1}$, for which a formula is established that generalizes the Gauss–Bonnet formula. For this purpose, using the vector field $n$, a map is constructed from an arbitrary hypersurface $F^m\subset G$ onto the $m$-dimensional unit sphere $S^m$. It is proved that the volume element $d\sigma$ of the sphere $S^m$ and the volume element $dV$ of the hypersurface $F^m$ are connected under this map by the relation $d\sigma=(P\nu)dV$, where $\nu$ is the unit normal to $F^m$ and $P$ is a vector of the curvature of the field $n$:
$$ P=(-1)^m\{S_mn+S_{m-1}k_1+\dots+k_m\}. $$
Here the $S_i$ are symmetric functions of the principal curvatures of the second kind of the field $n$, $k_1=\nabla_nn,\dots,k_{i+1}=\nabla_{k_i}n,\dots$. The flux of the vector field $P$ through a closed hypersurface $F^m$, divided by the volume of the $m$-dimensional unit sphere $S^m$, equals the degree of the map of $F^m$ to $S^m$ determined by the vector field $n$. For a field $n$, given on all of $E^3$, including the point at infinity, the Hopf invariant is calculated by use of the vector field $P$.
Bibliography: 5 titles.
Received: 21.10.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1987, Volume 134(176), Number 1(9), Pages 135–140
Bibliographic databases:
UDC: 514
MSC: Primary 53A07; Secondary 55Q25
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “A multidimensional generalization of the Gauss–Bonnet formula for vector fields in Euclidean space”, Mat. Sb. (N.S.), 134(176):1(9) (1987), 135–140; Math. USSR-Sb., 62:1 (1989), 139–144
Citation in format AMSBIB
\Bibitem{Ami87}
\by Yu.~A.~Aminov
\paper A~multidimensional generalization of the Gauss--Bonnet formula for vector fields in Euclidean space
\jour Mat. Sb. (N.S.)
\yr 1987
\vol 134(176)
\issue 1(9)
\pages 135--140
\mathnet{http://mi.mathnet.ru/sm2655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=912416}
\zmath{https://zbmath.org/?q=an:0663.53037|0636.53061}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 62
\issue 1
\pages 139--144
\crossref{https://doi.org/10.1070/SM1989v062n01ABEH003231}
Linking options:
  • https://www.mathnet.ru/eng/sm2655
  • https://doi.org/10.1070/SM1989v062n01ABEH003231
  • https://www.mathnet.ru/eng/sm/v176/i1/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:596
    Russian version PDF:170
    English version PDF:18
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024