Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 62, Issue 1, Pages 121–138
DOI: https://doi.org/10.1070/SM1989v062n01ABEH003230
(Mi sm2654)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the regular isometric immersion in $E^3$ of unbounded domains of negative curvature

D. V. Tunitsky
References:
Abstract: A wide class of unbounded domains is considered in complete Riemannian manifolds of negative curvature that are homeomorphic to planes, and the possibility of immersing them regularly and isometrically in three-dimensional Euclidean space $E^3$ is investigated.
Let a metric of the manifold under consideration be given on the parameter plane $xOy$ by a line element of the form $ds^2=dx^2+B^2(x,y)dy^2$, where $B\in C^4(R^2)$. The set $\pi[\omega]=\{(x,y)\in R^2:|x|<\omega(y)\}$ is considered, where $\omega(y)>0$ and is twice continuously differentiable. Let $\pi^*[\omega]$ denote the corresponding domain on the manifold. Then the domain $\pi^*[\omega]$ can be isometrically immersed in $E^3$ by means of a surface of class $C^3$.
This result is proved by constructing a smooth solution of a special form of the Gauss–Peterson–Codazzi system of equations in the domain $\pi[\omega]$.
Figures: 2.
Bibliography: 11 titles.
Received: 22.05.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1987, Volume 134(176), Number 1(9), Pages 119–134
Bibliographic databases:
UDC: 514.752.4
MSC: 53C20, 53A05
Language: English
Original paper language: Russian
Citation: D. V. Tunitsky, “On the regular isometric immersion in $E^3$ of unbounded domains of negative curvature”, Mat. Sb. (N.S.), 134(176):1(9) (1987), 119–134; Math. USSR-Sb., 62:1 (1989), 121–138
Citation in format AMSBIB
\Bibitem{Tun87}
\by D.~V.~Tunitsky
\paper On the regular isometric immersion in $E^3$ of unbounded domains of
negative curvature
\jour Mat. Sb. (N.S.)
\yr 1987
\vol 134(176)
\issue 1(9)
\pages 119--134
\mathnet{http://mi.mathnet.ru/sm2654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=912415}
\zmath{https://zbmath.org/?q=an:0663.53003|0636.53003}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 62
\issue 1
\pages 121--138
\crossref{https://doi.org/10.1070/SM1989v062n01ABEH003230}
Linking options:
  • https://www.mathnet.ru/eng/sm2654
  • https://doi.org/10.1070/SM1989v062n01ABEH003230
  • https://www.mathnet.ru/eng/sm/v176/i1/p119
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:336
    Russian version PDF:105
    English version PDF:10
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024