Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 1, Pages 63–94
DOI: https://doi.org/10.1070/SM1977v031n01ABEH002291
(Mi sm2639)
 

This article is cited in 26 scientific papers (total in 26 papers)

H. Lewy's equation and analysis on a pseudoconvex manifold. II

G. M. Henkin
References:
Abstract: The “fundamental problems” of function theory are solved anew on a strictly pseudoconvex manifold, with precise Lp estimates at the boundary, by means of the formulas for the global solutions of the “locally unsolvable” equation of H. Lewy.
Bibliography: 50 titles.
Received: 29.04.1976
Bibliographic databases:
UDC: 517.55
MSC: Primary 32F15; Secondary 35N15
Language: English
Original paper language: Russian
Citation: G. M. Henkin, “H. Lewy's equation and analysis on a pseudoconvex manifold. II”, Math. USSR-Sb., 31:1 (1977), 63–94
Citation in format AMSBIB
\Bibitem{Hen77}
\by G.~M.~Henkin
\paper H.~Lewy's equation and analysis on a~pseudoconvex manifold.~II
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 1
\pages 63--94
\mathnet{http://mi.mathnet.ru/eng/sm2639}
\crossref{https://doi.org/10.1070/SM1977v031n01ABEH002291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473232}
\zmath{https://zbmath.org/?q=an:0358.35058|0388.35052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FV43600005}
Linking options:
  • https://www.mathnet.ru/eng/sm2639
  • https://doi.org/10.1070/SM1977v031n01ABEH002291
  • https://www.mathnet.ru/eng/sm/v144/i1/p71
  • This publication is cited in the following 26 articles:
    1. Tran Vu Khanh, Andrew Raich, “Lp‐Estimates for the ∂¯b‐equation on a class of infinite type domains”, Mathematische Nachrichten, 294:1 (2021), 82  crossref
    2. Ly Kim Ha, “Zero varieties for the Nevanlinna class in weakly pseudoconvex domains of maximal type F in $\mathbb {C}^2$ C 2”, Ann Glob Anal Geom, 51:4 (2017), 327  crossref
    3. V. Michel, G. M. Henkin, “Bishop-Runge approximations and inversion of a Riemann-Klein theorem”, Sb. Math., 206:2 (2015), 311–332  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Elin Götmark, “Weighted integral formulas on manifolds”, Ark. Mat., 46:1 (2008), 43  crossref
    5. Chen S., “On Zero Varieties of Holomorphic Functions in Hardy Spaces”, J. Math. Anal. Appl., 297:1 (2004), 38–47  crossref  mathscinet  zmath  isi
    6. P.L.. Polyakov, “Sharp lipschitz estimates for operator
      $$\bar \partial _M $$
      on aq-pseudoconcave CR manifoldon aq-pseudoconcave CR manifold”, J Geom Anal, 12:1 (2002), 103  crossref  mathscinet  zmath
    7. Heungju AHN, Hong Rae CHO, “Zero sets of holomorphic functions in the Nevanlinna type class on convex domains in C<sup>2</sup>”, Jpn. j. math, 28:2 (2002), 245  crossref
    8. Cumenge A., “Zero Sets of Functions in the Nevanlinna Or the Nevanlinna-Djrbachian Classes”, Pac. J. Math., 199:1 (2001), 79–92  crossref  mathscinet  zmath  isi
    9. B HENNE, “Classes de Nevanlinna dans certains domaines strictement pseudoconvexes non lisses”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:4 (1998), 437  crossref  mathscinet  zmath
    10. E. M. Chirka, Encyclopaedia of Mathematical Sciences, 7, Introduction to Complex Analysis, 1997, 117  crossref
    11. P.L.. Polyakov, “Sharp estimates for operator
      $$\bar \partial _M $$
      on aq-concave CR manifoldon aq-concave CR manifold”, J Geom Anal, 6:2 (1996), 233  crossref  mathscinet  zmath
    12. Chen ZH. Ma D., “Sharp l(P) Estimates for the Partial-Derivative(B)-Equation on the Boundaries of Real Ellipsoids in C-N”, Commun. Partial Differ. Equ., 19:1-2 (1994), 61–87  crossref  mathscinet  zmath  isi
    13. Gábor Francsics, “Hypoellipticity in the tangential Cauchy-Riemann complex”, Duke Math. J., 73:1 (1994)  crossref
    14. D. -C. Chang, A. Nagel, E. M. Stein, “Estimates for the
      $$\bar \partial $$
      -Neumann problem in pseudoconvex domains of finite type in C2problem in pseudoconvex domains of finite type in C2”, Acta Math, 169:1 (1992), 153  crossref  mathscinet  zmath  isi
    15. P. V. Degtar', “Integration of Hamiltonian systems by the method of the $\overline\partial$ -problem”, Russian Math. Surveys, 47:3 (1992), 170–171  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    16. Mei-Chi Shaw, “The range of the tangential Cauchy-Riemann operator over a small ball”, Journal of Differential Equations, 86:1 (1990), 183  crossref  mathscinet
    17. Shaw M., “Prescribing Zeros of Functions in the Nevanlinna Class on Weakly Pseudo-Convex Domains in C-2”, Trans. Am. Math. Soc., 313:1 (1989), 407–418  crossref  mathscinet  zmath  isi
    18. Mei-Chi Shaw, “Prescribing zeros of functions in the Nevanlinna class on weakly pseudo-convex domains in 𝐶²”, Trans. Amer. Math. Soc., 313:1 (1989), 407  crossref
    19. Shaw M., “Holder and Lp Estimates for Partial-Differential-Equation-B on Weakly Pseudo-Convex Boundaries in C2”, Math. Ann., 279:4 (1988), 635–652  crossref  mathscinet  zmath  isi
    20. Charpentier P., “The Zeros in Functions of the Nevanlinna-Type in the Bidisc”, 1094, 1984, 32–43  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:395
    Russian version PDF:143
    English version PDF:27
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025