Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 62, Issue 1, Pages 1–27
DOI: https://doi.org/10.1070/SM1989v062n01ABEH003223
(Mi sm2637)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of the solution of the Dirichlet problem for the system of elasticity theory in the exterior of a thin body of revolution

G. V. Zhdanova
References:
Abstract: The asymptotics is found for a solution of the system of equations
$$ A(\partial_x)\mathbf u(x)+\omega^2\rho\mathbf u(x)=0,\quad x\in D_\varepsilon,\qquad \mathbf u(x)=\mathbf f(x),\quad x\in S_\varepsilon, $$
of steady-state elastic vibrations of an isotropic medium. Here $x\in\mathbf R^3$, $\varepsilon>0$ is a small parameter, $S_\varepsilon$ is a bounded closed surface given in spheroidal coordinates by the equation $\xi=1+\varepsilon g(\eta,\varepsilon)$, and $D_\varepsilon$ is the exterior of $S_\varepsilon$. The vector-valued function $\mathbf u(x)$ satisfies a radiation condition. The asymptotics of the solution of the problem is found up to $O(\varepsilon^m)$, $m>0$ arbitrary, in the case where the boundary condition does not depend on the polar angle $\varphi$, and up to $O(\varepsilon^2\ln\varepsilon)$ in the case of boundary conditions which are not axially symmetric. The formulas obtained are valid everywhere near the body (including neighborhoods of the end points) and far from it.
Bibliography: 12 titles.
Received: 30.05.1986
Bibliographic databases:
UDC: 531.262
MSC: Primary 73D30; Secondary 35B40
Language: English
Original paper language: Russian
Citation: G. V. Zhdanova, “Asymptotics of the solution of the Dirichlet problem for the system of elasticity theory in the exterior of a thin body of revolution”, Math. USSR-Sb., 62:1 (1989), 1–27
Citation in format AMSBIB
\Bibitem{Zhd87}
\by G.~V.~Zhdanova
\paper Asymptotics of the solution of the Dirichlet problem for the system
of elasticity theory in the exterior of a~thin body of revolution
\jour Math. USSR-Sb.
\yr 1989
\vol 62
\issue 1
\pages 1--27
\mathnet{http://mi.mathnet.ru//eng/sm2637}
\crossref{https://doi.org/10.1070/SM1989v062n01ABEH003223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=912408}
\zmath{https://zbmath.org/?q=an:0679.73013|0658.73003}
Linking options:
  • https://www.mathnet.ru/eng/sm2637
  • https://doi.org/10.1070/SM1989v062n01ABEH003223
  • https://www.mathnet.ru/eng/sm/v176/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024