Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1979, Volume 35, Issue 2, Pages 173–180
DOI: https://doi.org/10.1070/SM1979v035n02ABEH001463
(Mi sm2595)
 

This article is cited in 9 scientific papers (total in 9 papers)

On $tt$-degrees of recursively enumerable Turing degrees

G. N. Kobzev
References:
Abstract: The main result of the paper asserts that if $A$ is a semirecursive $\eta$-hyperhypersimple set, then for every set $B$ with $A\equiv_TB$ there exists a recursive set $C$ such that $C\leq_mA$ and $C\leqslant_{tt}B$. If $B$ is recursively enumerable, then $C\leqslant_qB$. A corollary asserts that if a $tt$-degree contains an $\eta$-maximal semirecursive set, then it is a minimal element in the semilattice of all $tt$-degrees.
Bibliography: 9 titles.
Received: 31.05.1977
Bibliographic databases:
UDC: 518.5
MSC: Primary 03D30, 03D50, 03D25; Secondary 03D55
Language: English
Original paper language: Russian
Citation: G. N. Kobzev, “On $tt$-degrees of recursively enumerable Turing degrees”, Math. USSR-Sb., 35:2 (1979), 173–180
Citation in format AMSBIB
\Bibitem{Kob78}
\by G.~N.~Kobzev
\paper On~$tt$-degrees of recursively enumerable Turing degrees
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 2
\pages 173--180
\mathnet{http://mi.mathnet.ru//eng/sm2595}
\crossref{https://doi.org/10.1070/SM1979v035n02ABEH001463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=507813}
\zmath{https://zbmath.org/?q=an:0419.03026|0386.03022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JB17600002}
Linking options:
  • https://www.mathnet.ru/eng/sm2595
  • https://doi.org/10.1070/SM1979v035n02ABEH001463
  • https://www.mathnet.ru/eng/sm/v148/i4/p507
    Cycle of papers
    This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:237
    Russian version PDF:79
    English version PDF:18
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024