Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 1, Pages 133–143
DOI: https://doi.org/10.1070/SM1981v039n01ABEH001477
(Mi sm2497)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations

V. V. Napalkov
References:
Abstract: It is proved that every continuous function defined on the $n$-dimensional rectangular parallelepiped $\{x=(x_1,\dots,x_n)\in\mathbf R^n:0\leqslant x_i\leqslant a_i,\ 1\leqslant i\leqslant n\}$ can be approximated by polynomials of the form $Q(x)=\sum^p_{|\alpha|=0}c_\alpha x^\alpha$, where $c_\alpha=\eta_\alpha M(\alpha)$, with $\sum^p_{|\alpha|=0}|\eta_\alpha|\leqslant1$. Here $M(\alpha)$ is an arbitrary positive function defined on the set of multi-indices, and $\lim_{|\alpha|\to\infty}\sqrt[|\alpha|]{M(\alpha)}=\infty$.
Bibliography: 9 titles.
Received: 20.03.1979
Bibliographic databases:
UDC: 517.5
MSC: 41A10, 41A63
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations”, Math. USSR-Sb., 39:1 (1981), 133–143
Citation in format AMSBIB
\Bibitem{Nap80}
\by V.~V.~Napalkov
\paper Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 1
\pages 133--143
\mathnet{http://mi.mathnet.ru//eng/sm2497}
\crossref{https://doi.org/10.1070/SM1981v039n01ABEH001477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560468}
\zmath{https://zbmath.org/?q=an:0462.41003|0438.41008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ97300007}
Linking options:
  • https://www.mathnet.ru/eng/sm2497
  • https://doi.org/10.1070/SM1981v039n01ABEH001477
  • https://www.mathnet.ru/eng/sm/v153/i1/p144
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024