Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 1, Pages 107–123
DOI: https://doi.org/10.1070/SM1981v039n01ABEH001475
(Mi sm2494)
 

This article is cited in 5 scientific papers (total in 5 papers)

On exceptional sets on the boundary and the uniqueness of solutions of the Dirichlet problem for a second order elliptic equation

S. V. Gaidenko
References:
Abstract: The Dirichlet problem is considered for a linear elliptic equation of second order in $n$-dimensional domain $Q$, $n\geqslant2$, with smooth boundary $\partial Q$ in the case where the generalized solution of this equation takes boundary values everywhere on the boundary but an exceptional set $\mathscr E\subset\partial Q$. It is proved that for $n/(n-1)\leqslant p<\infty$ the space $L_p(Q)$ is a class of uniqueness for such a problem if $\mathscr E$ has finite Hausdorff measure of order $n-q$, where $\frac1p+\frac1q=1$. By an example of the Dirichlet problem for Laplace's equation it is shown that the indicated order of the Hausdorff measure is best possible.
Bibliography: 14 titles.
Received: 13.06.1979
Bibliographic databases:
UDC: 517.946
MSC: Primary 35J67; Secondary 35J25
Language: English
Original paper language: Russian
Citation: S. V. Gaidenko, “On exceptional sets on the boundary and the uniqueness of solutions of the Dirichlet problem for a second order elliptic equation”, Math. USSR-Sb., 39:1 (1981), 107–123
Citation in format AMSBIB
\Bibitem{Gai80}
\by S.~V.~Gaidenko
\paper On exceptional sets on the boundary and the uniqueness of solutions of the Dirichlet problem for a~second order elliptic equation
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 1
\pages 107--123
\mathnet{http://mi.mathnet.ru//eng/sm2494}
\crossref{https://doi.org/10.1070/SM1981v039n01ABEH001475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560466}
\zmath{https://zbmath.org/?q=an:0462.35026|0429.35029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ97300005}
Linking options:
  • https://www.mathnet.ru/eng/sm2494
  • https://doi.org/10.1070/SM1981v039n01ABEH001475
  • https://www.mathnet.ru/eng/sm/v153/i1/p116
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024