Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 44, Issue 4, Pages 511–516
DOI: https://doi.org/10.1070/SM1983v044n04ABEH000983
(Mi sm2485)
 

This article is cited in 5 scientific papers (total in 5 papers)

Graded Lie algebras with zero component equal to a sum of commuting ideals

M. I. Kuznetsov
References:
Abstract: This paper considers transitive irreducible 1-graded Lie algebras $L=\bigoplus_{i\geqslant-1}L_i$, $L_1=0$, over an algebraically closed field $K$ of characteristic $p\geqslant0$, $p\ne2$. We prove that if $L_0=G_1+\dots+G_s$, $G_i\ne Z(L_0)$, is the decomposition of $L_0$ and the ideals of $G_i$ commute, then $s=1$ or $s=2$. In the latter case $L$ is isomorphic to one of the algebras $A_n$, $A^z_{n_0p-1}$ or $\widetilde{\mathfrak{gl}}(n_0p)=\mathfrak{gl}(n_0p)/\langle1\rangle$. .
Bibliography: 7 titles.
Received: 03.03.1981
Bibliographic databases:
UDC: 519.4
MSC: 17B70, 17B05, 17B50
Language: English
Original paper language: Russian
Citation: M. I. Kuznetsov, “Graded Lie algebras with zero component equal to a sum of commuting ideals”, Math. USSR-Sb., 44:4 (1983), 511–516
Citation in format AMSBIB
\Bibitem{Kuz81}
\by M.~I.~Kuznetsov
\paper Graded Lie algebras with zero component equal to a~sum of commuting ideals
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 4
\pages 511--516
\mathnet{http://mi.mathnet.ru//eng/sm2485}
\crossref{https://doi.org/10.1070/SM1983v044n04ABEH000983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=665857}
\zmath{https://zbmath.org/?q=an:0506.17006|0486.17005}
Linking options:
  • https://www.mathnet.ru/eng/sm2485
  • https://doi.org/10.1070/SM1983v044n04ABEH000983
  • https://www.mathnet.ru/eng/sm/v158/i4/p568
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:267
    Russian version PDF:79
    English version PDF:9
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024