Abstract:
This paper considers transitive irreducible 1-graded Lie algebras L=⨁i⩾−1Li, L1=0, over an algebraically closed field K of characteristic p⩾0, p≠2. We prove that if L0=G1+⋯+Gs, Gi≠Z(L0), is the decomposition of L0 and the ideals of Gi commute, then s=1 or s=2. In the latter case L is isomorphic to one of the algebras An, Azn0p−1 or ~gl(n0p)=gl(n0p)/⟨1⟩.
.
Bibliography: 7 titles.
\Bibitem{Kuz81}
\by M.~I.~Kuznetsov
\paper Graded Lie algebras with zero component equal to a~sum of commuting ideals
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 4
\pages 511--516
\mathnet{http://mi.mathnet.ru/eng/sm2485}
\crossref{https://doi.org/10.1070/SM1983v044n04ABEH000983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=665857}
\zmath{https://zbmath.org/?q=an:0506.17006|0486.17005}
Linking options:
https://www.mathnet.ru/eng/sm2485
https://doi.org/10.1070/SM1983v044n04ABEH000983
https://www.mathnet.ru/eng/sm/v158/i4/p568
This publication is cited in the following 5 articles:
M. I. Kuznetsov, “Graded Lie algebras with null component contained in a sum of commuting algebras”, J. Math. Sci., 164:2 (2010), 250–254
Gregory T. Kuznetsov M., “On Depth-Three Graded Lie Algebras of Characteristic Three with Classical Reductive Null Component”, Commun. Algebr., 32:9 (2004), 3339–3371
Ostrik V., “2-Grading Lie Algebras of the Characteristic 3”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1999, no. 1, 54–55
M. I. Kuznetsov, “Classification of simple graded Lie algebras with nonsemisimple
component L0”, Math. USSR-Sb., 66:1 (1990), 145–158
Kuznetsov M., “Graded Lie-Algebras with Null Component Containing Sum of Commuting Ideals”, Commun. Algebr., 12:15-1 (1984), 1917–1927