Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 8, Pages 1213–1234
DOI: https://doi.org/10.1070/sm1997v188n08ABEH000247
(Mi sm247)
 

On the spectra of first order irregular operator equations

V. V. Kornienko

A. Navoi Samarkand State University
References:
Abstract: The distribution of the spectrum $\sigma L=P\sigma L\cup C\sigma L\cup R\sigma L$ of the operator $L=L(\mu ,\alpha ,a,A)$ in the complex plane $\mathbb C$ is studied. The operator $L$ is the closure in $H=\mathscr L_2(0,b)\otimes \mathfrak H$ of the operator $t^\alpha aD_t+A$ originally defined on smooth functions $u(t)\colon [0,b]\to \mathfrak H$ satisfying the condition $\mu u(0)-u(b)=0$, where $\alpha \in \mathbb R$, $a\in \mathbb C$, $D_t\equiv d/dt$, $A$ is a model operator in a Hilbert space $\mathfrak H$ and $\mu \in \overline {\mathbb C}$. Conditions (criteria) in terms of the parameter $\alpha$ ensuring that the eigenfunctions of the operator $L\colon H\to H$ make up a complete system, a minimal system, or a (Riesz) basis in the Hilbert space $H$ are obtained.
Received: 13.05.1996 and 11.02.1997
Bibliographic databases:
UDC: 517.95
MSC: Primary 34L05; Secondary 34G10, 35P05
Language: English
Original paper language: Russian
Citation: V. V. Kornienko, “On the spectra of first order irregular operator equations”, Sb. Math., 188:8 (1997), 1213–1234
Citation in format AMSBIB
\Bibitem{Kor97}
\by V.~V.~Kornienko
\paper On the spectra of first order irregular operator equations
\jour Sb. Math.
\yr 1997
\vol 188
\issue 8
\pages 1213--1234
\mathnet{http://mi.mathnet.ru//eng/sm247}
\crossref{https://doi.org/10.1070/sm1997v188n08ABEH000247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481399}
\zmath{https://zbmath.org/?q=an:0893.34077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286455}
Linking options:
  • https://www.mathnet.ru/eng/sm247
  • https://doi.org/10.1070/sm1997v188n08ABEH000247
  • https://www.mathnet.ru/eng/sm/v188/i8/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024