Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 8, Pages 1183–1190
DOI: https://doi.org/10.1070/sm1997v188n08ABEH000244
(Mi sm244)
 

This article is cited in 1 scientific paper (total in 1 paper)

Periodic $\lambda$-rings and exponents of finite groups

A. A. Davydov

M. V. Lomonosov Moscow State University
References:
Abstract: A $\lambda$-ring is said to be $n$-periodic if its Adams operators satisfy the relation $\psi^{i+n}=\psi^i$ for each $i$. The quotient by the radical of the free periodic $\lambda$-ring generated by one element is described. Using this description, the order of a finite group is shown to divide the group's exponent to the power equal to the dimension of an arbitrary faithful complex representation.
Received: 05.11.1996
Bibliographic databases:
UDC: 512.737
MSC: 19A31, 20C15
Language: English
Original paper language: Russian
Citation: A. A. Davydov, “Periodic $\lambda$-rings and exponents of finite groups”, Sb. Math., 188:8 (1997), 1183–1190
Citation in format AMSBIB
\Bibitem{Dav97}
\by A.~A.~Davydov
\paper Periodic $\lambda$-rings and exponents of finite groups
\jour Sb. Math.
\yr 1997
\vol 188
\issue 8
\pages 1183--1190
\mathnet{http://mi.mathnet.ru//eng/sm244}
\crossref{https://doi.org/10.1070/sm1997v188n08ABEH000244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481396}
\zmath{https://zbmath.org/?q=an:0887.19001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286457}
Linking options:
  • https://www.mathnet.ru/eng/sm244
  • https://doi.org/10.1070/sm1997v188n08ABEH000244
  • https://www.mathnet.ru/eng/sm/v188/i8/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:310
    Russian version PDF:192
    English version PDF:17
    References:41
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024