Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 44, Issue 1, Pages 75–95
DOI: https://doi.org/10.1070/SM1983v044n01ABEH000952
(Mi sm2433)
 

This article is cited in 6 scientific papers (total in 6 papers)

Systems of singular integral equations with a shift

Yu. I. Karlovich, V. G. Kravchenko
References:
Abstract: Let $\Gamma$ be a simple closed oriented Lyapunov curve and let $\alpha(t)$ be an $H$-smooth diffeomorphism of $\Gamma$ onto itself whose set of fixed points is nonempty and finite. The system of equations
$$ T\varphi\equiv A_1P\varphi+A_2Q\varphi=g $$
is considered in the space $L^n_p(\Gamma)$, $1<p<\infty$, where $P+Q$ is the identity operator, $P-Q=S$ is a singular integral operator with Cauchy kernel, $A_k$ ($k=1,2$) are polynomials of positive and negative degree in the shift operator $U$ defined by $(U\varphi)(t)=|\alpha'(t)|^{1/p}\varphi[\alpha(t)]$, and the coefficients in the $A_k$ are matrix-valued functions that are continuous on $\Gamma$.
The authors obtain conditions for the operator $T$ to be Fredholm, and the same for generalizations of $T$ to a shift preserving or changing the orientation and having a finite set of periodic points whose multiplicity is not necessarily equal to one.
Bibliography: 21 titles.
Received: 19.07.1980
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1981, Volume 116(158), Number 1(9), Pages 87–110
Bibliographic databases:
UDC: 517.948.32
MSC: Primary 45E05, 45F15, 47A53; Secondary 30E25
Language: English
Original paper language: Russian
Citation: Yu. I. Karlovich, V. G. Kravchenko, “Systems of singular integral equations with a shift”, Mat. Sb. (N.S.), 116(158):1(9) (1981), 87–110; Math. USSR-Sb., 44:1 (1983), 75–95
Citation in format AMSBIB
\Bibitem{KarKra81}
\by Yu.~I.~Karlovich, V.~G.~Kravchenko
\paper Systems of singular integral equations with a~shift
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 116(158)
\issue 1(9)
\pages 87--110
\mathnet{http://mi.mathnet.ru/sm2433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=632490}
\zmath{https://zbmath.org/?q=an:0517.45004}
\transl
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 1
\pages 75--95
\crossref{https://doi.org/10.1070/SM1983v044n01ABEH000952}
Linking options:
  • https://www.mathnet.ru/eng/sm2433
  • https://doi.org/10.1070/SM1983v044n01ABEH000952
  • https://www.mathnet.ru/eng/sm/v158/i1/p87
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:271
    Russian version PDF:82
    English version PDF:18
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024