Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 1, Pages 117–131
DOI: https://doi.org/10.1070/SM1982v043n01ABEH002435
(Mi sm2378)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients

A. L. Piatnitski
References:
Abstract: In this paper, the behavior of the support of the solution to the Cauchy problem for a hyperbolic equation of the form
$$ \frac{\partial^2}{\partial t^2}u^\varepsilon(x, t)-\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr)\frac\partial{\partial x_j}u^\varepsilon+b_i\biggl(x, \frac x\varepsilon\biggr)\frac\partial{\partial x_i}u^\varepsilon+c\biggl(x, \frac x\varepsilon\biggr)u^\varepsilon=0 $$
with periodic, rapidly oscillating coefficients $a_{ij}(y)$ and small parameter $\varepsilon$, is studied. It is proved that, for small $\varepsilon$, the domain of dependence of this equation is close to some convex cone with rectilinear generators.
In the case when the coefficients $a_{ij}$ depend essentially on only one argument, e.g. $y_1$, this limit cone can be found explicitly. Its construction uses the Hamiltonian, which does not depend on $\varepsilon$ and does not correspond to any differential operator.
Bibliography: 8 titles.
Received: 24.03.1980
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1981, Volume 115(157), Number 1(5), Pages 130–145
Bibliographic databases:
UDC: 517.946
MSC: 35L15, 35B20, 35B40
Language: English
Original paper language: Russian
Citation: A. L. Piatnitski, “On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients”, Math. USSR-Sb., 43:1 (1982), 117–131
Citation in format AMSBIB
\Bibitem{Pia81}
\by A.~L.~Piatnitski
\paper On the limit behavior of the domain of dependence of a~hyperbolic equation with rapidly oscillating coefficients
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 1
\pages 117--131
\mathnet{http://mi.mathnet.ru//eng/sm2378}
\crossref{https://doi.org/10.1070/SM1982v043n01ABEH002435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=618591}
\zmath{https://zbmath.org/?q=an:0494.35014|0459.35012}
Linking options:
  • https://www.mathnet.ru/eng/sm2378
  • https://doi.org/10.1070/SM1982v043n01ABEH002435
  • https://www.mathnet.ru/eng/sm/v157/i1/p130
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:378
    Russian version PDF:101
    English version PDF:12
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024