|
This article is cited in 2 scientific papers (total in 2 papers)
On nontrivial solutions of the homogeneous Abel problem
Yu. A. Kaz'min
Abstract:
Let $K$ denote the set of all entire functions $F(z)$ of finite exponential type with the following growth characteristic along the imaginary axis:
$$
F(iy)=O(|y|^Ne^{\frac\pi2|y|}),\qquad y\to\infty\quad(N\geqslant0).
$$
It is shown in this paper that the general solution of the symmetric Abel interpolation problem
$$
F^{(n)}(\pm n)=0,\qquad n=0,1,2,\dots,
$$
in the class $K$ is of the form $F(z)=C\sin(\pi z/2)$, where $C$ is an arbitrary constant.
Bibliography: 10 titles.
Received: 16.10.1978
Citation:
Yu. A. Kaz'min, “On nontrivial solutions of the homogeneous Abel problem”, Mat. Sb. (N.S.), 109(151):2(6) (1979), 254–274; Math. USSR-Sb., 37:2 (1980), 227–244
Linking options:
https://www.mathnet.ru/eng/sm2371https://doi.org/10.1070/SM1980v037n02ABEH001951 https://www.mathnet.ru/eng/sm/v151/i2/p254
|
Statistics & downloads: |
Abstract page: | 343 | Russian version PDF: | 109 | English version PDF: | 16 | References: | 69 |
|