|
This article is cited in 113 scientific papers (total in 113 papers)
Averaging of random operators
S. M. Kozlov
Abstract:
For the equation with rapidly oscillating coefficients in a bounded domain $\mathscr O\subset\mathbf R^n$
$$
\sum_{i,j=1}^n\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr),\qquad u_\varepsilon(x)|_{\partial\mathscr O}=f_1(x),
$$
where $(a_{ij}(y))$ form homogeneous random fields, an averaged equation of the form
$$
\sum_{i,j=1}^nq_{ij}\frac{\partial^2} {\partial x_i\partial x_j}u_0(x)=f(x),\qquad
u_0(x)|_{\partial\mathscr O}=f_1(x),
$$
is constructed with coefficients $q_{ij}$ which do not depend on $x$; various applications of this result are also obtained.
Bibliography: 22 titles.
Received: 26.07.1978
Citation:
S. M. Kozlov, “Averaging of random operators”, Mat. Sb. (N.S.), 109(151):2(6) (1979), 188–202; Math. USSR-Sb., 37:2 (1980), 167–180
Linking options:
https://www.mathnet.ru/eng/sm2365https://doi.org/10.1070/SM1980v037n02ABEH001948 https://www.mathnet.ru/eng/sm/v151/i2/p188
|
Statistics & downloads: |
Abstract page: | 1915 | Russian version PDF: | 529 | English version PDF: | 73 | References: | 109 |
|