Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 37, Issue 1, Pages 97–117
DOI: https://doi.org/10.1070/SM1980v037n01ABEH001944
(Mi sm2358)
 

This article is cited in 25 scientific papers (total in 25 papers)

Free interpolation sets for Hölder classes

E. M. Dyn'kin
References:
Abstract: Let $\mathbf D=\{z,|z|<1\}$, let $E$ be a closed subset of $\overline{\mathbf D}$ and let $0<s<1$. Let $A^s$ be the space of functions $f$ analytic in $\mathbf D$ and continuous in $\overline{\mathbf D}$ such that
\begin{equation} |f(z_1)-f(z_2)|\leqslant\operatorname{const}\cdot|z_1-z_2|^s \tag{\ast} \end{equation}
everywhere in $\overline{\mathbf D}$. Let $\Lambda^s(E)$ be the space of functions $f$ continuous on $E$ that satisfy ($\ast$) everywhere on $E$. It is clear that $A^s|_E\subset\Lambda^s(E)$. The set $E$ is said to be $A^s$-interpolating if $A^s|_E=\Lambda^s(E)$.
The article gives necessary and sufficient conditions for a set $E$ to be interpolating (independently of $s$). Similar results are obtained for $s>1$ and for classes of functions with derivatives in $H^p$.
Bibliography: 18 titles.
Received: 30.06.1978
Bibliographic databases:
UDC: 517.53
MSC: Primary 30E05; Secondary 30D60
Language: English
Original paper language: Russian
Citation: E. M. Dyn'kin, “Free interpolation sets for Hölder classes”, Math. USSR-Sb., 37:1 (1980), 97–117
Citation in format AMSBIB
\Bibitem{Dyn79}
\by E.~M.~Dyn'kin
\paper Free interpolation sets for H\"older classes
\jour Math. USSR-Sb.
\yr 1980
\vol 37
\issue 1
\pages 97--117
\mathnet{http://mi.mathnet.ru//eng/sm2358}
\crossref{https://doi.org/10.1070/SM1980v037n01ABEH001944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=538552}
\zmath{https://zbmath.org/?q=an:0433.30030|0407.30024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KN98200007}
Linking options:
  • https://www.mathnet.ru/eng/sm2358
  • https://doi.org/10.1070/SM1980v037n01ABEH001944
  • https://www.mathnet.ru/eng/sm/v151/i1/p107
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024