Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 42, Issue 4, Pages 451–460
DOI: https://doi.org/10.1070/SM1982v042n04ABEH002378
(Mi sm2348)
 

On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$

V. G. Dmitriev
References:
Abstract: It is proved that a hypersurface $F$ imbedded in $\mathbf R^{n+1}$, $n\geqslant2$, which is locally convex at all points except for a closed set $E$ with $(n-1)$-dimensional Hausdorff measure $\mathscr H_{n-1}(E)$, and strictly convex near $E$ is in fact locally convex everywhere. The author also gives various corollaries. In particular, let $M$ be a complete two-dimensional Riemannian manifold of nonnegative curvature $K$ and $E\subset M$ a closed subset for which $\mathscr H_1(E)=0$. Assume further that there exists a neighborhood $U\supset E$ such that $K(x)>0$ for $x\in U\setminus E$, $f\colon M\to\mathbf R^3$ is such that $f|_{U\setminus E}$ is an imbedding, and $f|_{M\setminus E}\in C^{1,\alpha}$, $\alpha>2/3$. Then $f(M)$ is a complete convex surface in $\mathbf R^3$. This result is an generalization of results in the paper reviewed in RZh Mat, 1973, 7A724.
Bibliography: 19 titles.
Received: 19.02.1980 and 25.11.1980
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1981, Volume 114(156), Number 4, Pages 511–522
Bibliographic databases:
UDC: 514.873
MSC: Primary 53C42; Secondary 52A20
Language: English
Original paper language: Russian
Citation: V. G. Dmitriev, “On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$”, Mat. Sb. (N.S.), 114(156):4 (1981), 511–522; Math. USSR-Sb., 42:4 (1982), 451–460
Citation in format AMSBIB
\Bibitem{Dmi81}
\by V.~G.~Dmitriev
\paper On the structure of $\mathscr H_{n-1}$-almost everywhere convex hypersurfaces in $\mathbf R^{n+1}$
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 114(156)
\issue 4
\pages 511--522
\mathnet{http://mi.mathnet.ru/sm2348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=615339}
\zmath{https://zbmath.org/?q=an:0485.53003|0461.53005}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 42
\issue 4
\pages 451--460
\crossref{https://doi.org/10.1070/SM1982v042n04ABEH002378}
Linking options:
  • https://www.mathnet.ru/eng/sm2348
  • https://doi.org/10.1070/SM1982v042n04ABEH002378
  • https://www.mathnet.ru/eng/sm/v156/i4/p511
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:214
    Russian version PDF:59
    English version PDF:13
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024