Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 4, Pages 577–601
DOI: https://doi.org/10.1070/SM1980v036n04ABEH001888
(Mi sm2344)
 

This article is cited in 4 scientific papers (total in 4 papers)

Finite groups with a Frobenius subgroup

A. V. Romanovskii
References:
Abstract: Suppose $M$ denotes a $CC$-subgroup of order $m$ of a group $G$ which is different from its normalizer in $G$. A criterion for the simplicity of a group is obtained which includes the theorems of Feit and Ito on Zassenhaus groups of even degree and which is used to prove the following
Theorem. If $|G:N(M)|=m+1$ and the order of the centralizer of each nonidentity element of $N(M)$ in $G$ is odd, then $G\simeq PSL(2,m)$.
It is proved that if $M$ has a complement $B$ in $G$ and if $|M|-1$ does not divide $|B|$, then $N(M)$ has a nilpotent invariant complement in $G$, and if $M$ is complemented by a Frobenius subgroup in the simple group $G$, then $G\simeq PSL(2,2^n)$, $n>1$. Related to the results of Brauer, Leonard, and Sibley on finite linear groups is the following
Theorem. {\it If the degree of each irreducible constituent of some faithful complex character $\varphi$ of $G$ is less than $(m-1)/2$, then either $M\lhd G$ or $G\simeq Sz(2^{2n+1})$, $n\geqslant1$.}
Other results connected with the above theorems are also obtained.
Bibliography: 24 titles.
Received: 07.07.1978
Bibliographic databases:
UDC: 519.44
MSC: 20D25, 20D06, 20C15
Language: English
Original paper language: Russian
Citation: A. V. Romanovskii, “Finite groups with a Frobenius subgroup”, Math. USSR-Sb., 36:4 (1980), 577–601
Citation in format AMSBIB
\Bibitem{Rom79}
\by A.~V.~Romanovskii
\paper Finite groups with a~Frobenius subgroup
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 4
\pages 577--601
\mathnet{http://mi.mathnet.ru//eng/sm2344}
\crossref{https://doi.org/10.1070/SM1980v036n04ABEH001888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=534611}
\zmath{https://zbmath.org/?q=an:0441.20014|0414.20017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM97000008}
Linking options:
  • https://www.mathnet.ru/eng/sm2344
  • https://doi.org/10.1070/SM1980v036n04ABEH001888
  • https://www.mathnet.ru/eng/sm/v150/i4/p609
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024