Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 6, Pages 913–931
DOI: https://doi.org/10.1070/SM1997v188n06ABEH000232
(Mi sm232)
 

This article is cited in 45 scientific papers (total in 45 papers)

Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions

V. M. Petrogradsky

Ulyanovsk State University
References:
Abstract: We study the growth function $c_n(\mathbf V)$ for a variety of Lie algebras, where $c_n(\mathbf V)$ is the dimension of the linear hull of the set of multilinear words with $n$ different letters in the free algebra $F(\mathbf V,X)$ of the variety $\mathbf V$. With every non-trivial variety $\mathbf V$ of Lie algebras there is associated its complexity function $\mathscr C(\mathbf V,z)$, which is an entire function of a complex variable. In the case of a polynilpotent variety $\mathbf V$ of Lie algebras an estimate is obtained for the complexity function; in most cases it is of infinite order. We study the connection between the growth of a rapidly growing entire function and the asymptotics of its Taylor coefficients. The basic result is the asymptotics for the function $c_n(\mathbf V)$ in the case of a polynilpotent variety $\mathbf V$. Also, we prove an analogue of Regev's theorem for Lie algebras on upper estimates for the growth of arbitrary varieties. This gives more precision to the scale of superexponential growth of varieties of Lie algebras introduced earlier by the author.
Received: 20.06.1996
Bibliographic databases:
UDC: 512.55
MSC: 17B99, 30D20
Language: English
Original paper language: Russian
Citation: V. M. Petrogradsky, “Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions”, Sb. Math., 188:6 (1997), 913–931
Citation in format AMSBIB
\Bibitem{Pet97}
\by V.~M.~Petrogradsky
\paper Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions
\jour Sb. Math.
\yr 1997
\vol 188
\issue 6
\pages 913--931
\mathnet{http://mi.mathnet.ru//eng/sm232}
\crossref{https://doi.org/10.1070/SM1997v188n06ABEH000232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1479133}
\zmath{https://zbmath.org/?q=an:0890.17002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD90100013}
\elib{https://elibrary.ru/item.asp?id=13657405}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286541}
Linking options:
  • https://www.mathnet.ru/eng/sm232
  • https://doi.org/10.1070/SM1997v188n06ABEH000232
  • https://www.mathnet.ru/eng/sm/v188/i6/p119
  • This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024