Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 4, Pages 495–517
DOI: https://doi.org/10.1070/SM1980v036n04ABEH001853
(Mi sm2319)
 

An algebraic study of the simplest codes and coefficientless equations in words

L. G. Kiseleva
References:
Abstract: Let $A=\{a_1,\dots,a_n\}$ be an alphabet and let $W=\{w_1,\dots,w_m\}$ be an $m$-code, i.e. a set consisting of $m$ words in the alphabet $A$; let $|\alpha|$ denote the length of a word $\alpha$. Suppose that $\Sigma(W)=\sum_{i=1}^m|w_i|$, that $B=\{b_1,\dots,b_m\}$ is the alphabet of the message language, and $A^+=\bigcup_{i=1}^\infty A^i$, $f=f_W\colon B^+\to A^+$, $f(b_i)=w_i$, $f(\alpha\beta)=f(\alpha)f(\beta)$ is an alphabetic encoding,
\begin{gather*} R(W)=\{\langle\mu,\nu\rangle\mid f(\mu)\equiv f(\nu),\mu\not\equiv\nu\},\\ X'(W)=\min\{|\alpha|:\langle\mu,\nu\rangle\in R(W),f(\mu)\equiv f(\nu)\equiv\alpha\},\\ X'(m,N)=\max\{X'(W):\vert W\vert=m,\Sigma(W)\leqslant N\}. \end{gather*}
$X'(m,N)$ characterizes the smallest number of comparisons which are needed to solve the problem of $f_W$ being one-to-one for the $m$-code $W$ in the worst case when the size of the input information $\Sigma(W)\leqslant N$ (the unit of measurement is a comparison of letters from $A$). It is proved that $X'(3,N)\sim N^2/8$. We show that a nonhomogeneous equation in words in three unknowns has at most one nontrivial solution, up to isomorphism.
Bibliography: 10 titles.
Received: 13.04.1977
Bibliographic databases:
UDC: 621.394.1.001
MSC: Primary 20M35, 94B25; Secondary 20M05
Language: English
Original paper language: Russian
Citation: L. G. Kiseleva, “An algebraic study of the simplest codes and coefficientless equations in words”, Math. USSR-Sb., 36:4 (1980), 495–517
Citation in format AMSBIB
\Bibitem{Kis79}
\by L.~G.~Kiseleva
\paper An~algebraic study of the simplest codes and coefficientless equations in~words
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 4
\pages 495--517
\mathnet{http://mi.mathnet.ru//eng/sm2319}
\crossref{https://doi.org/10.1070/SM1980v036n04ABEH001853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=534607}
\zmath{https://zbmath.org/?q=an:0443.94017|0402.94035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM97000004}
Linking options:
  • https://www.mathnet.ru/eng/sm2319
  • https://doi.org/10.1070/SM1980v036n04ABEH001853
  • https://www.mathnet.ru/eng/sm/v150/i4/p529
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024