Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 50, Issue 2, Pages 495–511
DOI: https://doi.org/10.1070/SM1985v050n02ABEH002841
(Mi sm2312)
 

This article is cited in 1 scientific paper (total in 1 paper)

The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables

B. Jöricke
References:
Abstract: Let $G\subset\mathbf C^n$ be a bounded doamin and let $\omega$ be a modulus of continuity. This article is devoted to the following problem: which closed sets $S$ with $S\subset\overline G$ possess the property that, for an arbitrary function $f$ belonging to the algebra $A(G)$ of all functions analytic in $G$ and continuous in $\overline G$, the relation
$$ \max_{z,\zeta\in S,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant\omega(\delta) $$
for all $\delta>0$ implies
$$ \max_{z,\zeta\in\overline G,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant C\omega(\delta) $$
for all $\delta>0$, where the constant $C$ depends only on $G$ and $S$.
The main result is a theorem which asserts that if $G$ is a regular Weil domain then $S$ can be taken to be the Shilov boundary.
Bibliography: 20 titles.
Received: 09.02.1982 and 31.05.1983
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 122(164), Number 4(12), Pages 511–526
Bibliographic databases:
UDC: 517.15
MSC: Primary 32A40; Secondary 32E35
Language: English
Original paper language: Russian
Citation: B. Jöricke, “The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables”, Mat. Sb. (N.S.), 122(164):4(12) (1983), 511–526; Math. USSR-Sb., 50:2 (1985), 495–511
Citation in format AMSBIB
\Bibitem{Jor83}
\by B.~J\"oricke
\paper The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 122(164)
\issue 4(12)
\pages 511--526
\mathnet{http://mi.mathnet.ru/sm2312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=725455}
\zmath{https://zbmath.org/?q=an:0541.32002}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 2
\pages 495--511
\crossref{https://doi.org/10.1070/SM1985v050n02ABEH002841}
Linking options:
  • https://www.mathnet.ru/eng/sm2312
  • https://doi.org/10.1070/SM1985v050n02ABEH002841
  • https://www.mathnet.ru/eng/sm/v164/i4/p511
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:87
    English version PDF:5
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024