Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 50, Issue 2, Pages 495–511
DOI: https://doi.org/10.1070/SM1985v050n02ABEH002841
(Mi sm2312)
 

This article is cited in 1 scientific paper (total in 1 paper)

The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables

B. Jöricke
References:
Abstract: Let $G\subset\mathbf C^n$ be a bounded doamin and let $\omega$ be a modulus of continuity. This article is devoted to the following problem: which closed sets $S$ with $S\subset\overline G$ possess the property that, for an arbitrary function $f$ belonging to the algebra $A(G)$ of all functions analytic in $G$ and continuous in $\overline G$, the relation
$$ \max_{z,\zeta\in S,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant\omega(\delta) $$
for all $\delta>0$ implies
$$ \max_{z,\zeta\in\overline G,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant C\omega(\delta) $$
for all $\delta>0$, where the constant $C$ depends only on $G$ and $S$.
The main result is a theorem which asserts that if $G$ is a regular Weil domain then $S$ can be taken to be the Shilov boundary.
Bibliography: 20 titles.
Received: 09.02.1982 and 31.05.1983
Bibliographic databases:
UDC: 517.15
MSC: Primary 32A40; Secondary 32E35
Language: English
Original paper language: Russian
Citation: B. Jöricke, “The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables”, Math. USSR-Sb., 50:2 (1985), 495–511
Citation in format AMSBIB
\Bibitem{Jor83}
\by B.~J\"oricke
\paper The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 2
\pages 495--511
\mathnet{http://mi.mathnet.ru//eng/sm2312}
\crossref{https://doi.org/10.1070/SM1985v050n02ABEH002841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=725455}
\zmath{https://zbmath.org/?q=an:0541.32002}
Linking options:
  • https://www.mathnet.ru/eng/sm2312
  • https://doi.org/10.1070/SM1985v050n02ABEH002841
  • https://www.mathnet.ru/eng/sm/v164/i4/p511
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025