Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 2, Pages 195–202
DOI: https://doi.org/10.1070/SM1980v036n02ABEH001782
(Mi sm2287)
 

This article is cited in 5 scientific papers (total in 6 papers)

A generalization of the Borsuk–Ulam theorem

A. Yu. Volovikov
References:
Abstract: Let X be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group π=Zp of prime order p. For any continuous mapping f:XM let
 A(f)={xXf(x)=f(Tx)==f(Tp1x)},
where T is a generator of π.
Suppose \BreveHi(X;Zp)=0 for 0<i<n, and M is a compact Zp-orientable topological manifold of dimension m. If the mapping f:\BreveHn(M;Zp)\BreveHn(X;Zp) has zero image, then the cohomological dimension over Zp of the set A(f) is at least nm(p1).
Furthermore, if X is a generalized manifold of dimension N, and n=m(p1), then dimA(f)Nm(p1).
Bibliography: 8 titles.
Received: 07.03.1978
Bibliographic databases:
UDC: 513.836
MSC: Primary 55C20; Secondary 57A15, 57B10
Language: English
Original paper language: Russian
Citation: A. Yu. Volovikov, “A generalization of the Borsuk–Ulam theorem”, Math. USSR-Sb., 36:2 (1980), 195–202
Citation in format AMSBIB
\Bibitem{Vol79}
\by A.~Yu.~Volovikov
\paper A~generalization of the Borsuk--Ulam theorem
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 2
\pages 195--202
\mathnet{http://mi.mathnet.ru/eng/sm2287}
\crossref{https://doi.org/10.1070/SM1980v036n02ABEH001782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525838}
\zmath{https://zbmath.org/?q=an:0433.55001|0401.55005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22500004}
Linking options:
  • https://www.mathnet.ru/eng/sm2287
  • https://doi.org/10.1070/SM1980v036n02ABEH001782
  • https://www.mathnet.ru/eng/sm/v150/i2/p212
  • This publication is cited in the following 6 articles:
    1. Oleg R. Musin, Alexey Yu. Volovikov, “Borsuk–Ulam type theorems for G-spaces with applications to Tucker type lemmas”, J. Fixed Point Theory Appl., 25:1 (2023)  crossref
    2. Blaszczyk Z., Marzantowicz W., Singh M., “General Bourgin-Yang Theorems”, Topology Appl., 249 (2018), 112–126  crossref  mathscinet  zmath  isi  scopus
    3. Sabok M., “Extreme Amenability of Abelian l-0 Groups”, J. Funct. Anal., 263:10 (2012), 2978–2992  crossref  mathscinet  zmath  isi
    4. Wasserman A., “Isovariant Maps and the Borsuk-Ulam Theorem”, Topology Appl., 38:2 (1991), 155–161  crossref  mathscinet  zmath  isi
    5. A. Yu. Volovikov, “On the Bourgin–Yang theorem”, Russian Math. Surveys, 35:3 (1980), 196–200  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. A. Yu. Volovikov, “Two theorems from the theory of periodic transformations”, Math. USSR-Sb., 38:1 (1981), 119–125  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:382
    Russian version PDF:125
    English version PDF:22
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025