Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 2, Pages 195–202
DOI: https://doi.org/10.1070/SM1980v036n02ABEH001782
(Mi sm2287)
 

This article is cited in 5 scientific papers (total in 6 papers)

A generalization of the Borsuk–Ulam theorem

A. Yu. Volovikov
References:
Abstract: Let $X$ be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group $\pi=\mathbf Z_p$ of prime order $p$. For any continuous mapping $f\colon X\to M$ let
$$ \ A(f)=\{x\in X\mid f(x)=f(Tx)=\cdots=f(T^{p-1}x)\}, $$
where $T$ is a generator of $\pi$.
Suppose $\Breve H^i(X;\mathbf Z_p)=0$ for $0<i<n$, and $M$ is a compact $\mathbf Z_p$-orientable topological manifold of dimension $m$. If the mapping $f^*\colon\Breve H^n(M;\mathbf Z_p)\to\Breve H^n(X;\mathbf Z_p)$ has zero image, then the cohomological dimension over $ \mathbf Z_p$ of the set $A(f)$ is at least $n-m(p-1)$.
Furthermore, if $X$ is a generalized manifold of dimension $N$, and $n=m(p-1)$, then $\dim A(f)\geqslant N-m(p-1)$.
Bibliography: 8 titles.
Received: 07.03.1978
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1979, Volume 108(150), Number 2, Pages 212–218
Bibliographic databases:
UDC: 513.836
MSC: Primary 55C20; Secondary 57A15, 57B10
Language: English
Original paper language: Russian
Citation: A. Yu. Volovikov, “A generalization of the Borsuk–Ulam theorem”, Mat. Sb. (N.S.), 108(150):2 (1979), 212–218; Math. USSR-Sb., 36:2 (1980), 195–202
Citation in format AMSBIB
\Bibitem{Vol79}
\by A.~Yu.~Volovikov
\paper A~generalization of the Borsuk--Ulam theorem
\jour Mat. Sb. (N.S.)
\yr 1979
\vol 108(150)
\issue 2
\pages 212--218
\mathnet{http://mi.mathnet.ru/sm2287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525838}
\zmath{https://zbmath.org/?q=an:0433.55001|0401.55005}
\transl
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 2
\pages 195--202
\crossref{https://doi.org/10.1070/SM1980v036n02ABEH001782}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22500004}
Linking options:
  • https://www.mathnet.ru/eng/sm2287
  • https://doi.org/10.1070/SM1980v036n02ABEH001782
  • https://www.mathnet.ru/eng/sm/v150/i2/p212
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:351
    Russian version PDF:120
    English version PDF:13
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024