Abstract:
Let X be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group π=Zp of prime order p. For any continuous mapping f:X→M let
A(f)={x∈X∣f(x)=f(Tx)=⋯=f(Tp−1x)},
where T is a generator of π.
Suppose \BreveHi(X;Zp)=0 for 0<i<n, and M is a compact
Zp-orientable topological manifold of dimension m. If the mapping f∗:\BreveHn(M;Zp)→\BreveHn(X;Zp) has zero image, then the cohomological dimension over Zp of the set A(f) is at least n−m(p−1).
Furthermore, if X is a generalized manifold of dimension N, and n=m(p−1), then dimA(f)⩾N−m(p−1).
Bibliography: 8 titles.
This publication is cited in the following 6 articles:
Oleg R. Musin, Alexey Yu. Volovikov, “Borsuk–Ulam type theorems for G-spaces with applications to Tucker type lemmas”, J. Fixed Point Theory Appl., 25:1 (2023)
Blaszczyk Z., Marzantowicz W., Singh M., “General Bourgin-Yang Theorems”, Topology Appl., 249 (2018), 112–126
Sabok M., “Extreme Amenability of Abelian l-0 Groups”, J. Funct. Anal., 263:10 (2012), 2978–2992
Wasserman A., “Isovariant Maps and the Borsuk-Ulam Theorem”, Topology Appl., 38:2 (1991), 155–161
A. Yu. Volovikov, “On the Bourgin–Yang theorem”, Russian Math. Surveys, 35:3 (1980), 196–200
A. Yu. Volovikov, “Two theorems from the theory of periodic transformations”, Math. USSR-Sb., 38:1 (1981), 119–125