|
This article is cited in 5 scientific papers (total in 6 papers)
A generalization of the Borsuk–Ulam theorem
A. Yu. Volovikov
Abstract:
Let $X$ be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group $\pi=\mathbf Z_p$ of prime order $p$. For any continuous mapping $f\colon X\to M$ let
$$
\ A(f)=\{x\in X\mid f(x)=f(Tx)=\cdots=f(T^{p-1}x)\},
$$
where $T$ is a generator of $\pi$.
Suppose $\Breve H^i(X;\mathbf Z_p)=0$ for $0<i<n$, and $M$ is a compact
$\mathbf Z_p$-orientable topological manifold of dimension $m$. If the mapping $f^*\colon\Breve H^n(M;\mathbf Z_p)\to\Breve H^n(X;\mathbf Z_p)$ has zero image, then the cohomological dimension over $ \mathbf Z_p$ of the set $A(f)$ is at least $n-m(p-1)$.
Furthermore, if $X$ is a generalized manifold of dimension $N$, and $n=m(p-1)$, then $\dim A(f)\geqslant N-m(p-1)$.
Bibliography: 8 titles.
Received: 07.03.1978
Citation:
A. Yu. Volovikov, “A generalization of the Borsuk–Ulam theorem”, Mat. Sb. (N.S.), 108(150):2 (1979), 212–218; Math. USSR-Sb., 36:2 (1980), 195–202
Linking options:
https://www.mathnet.ru/eng/sm2287https://doi.org/10.1070/SM1980v036n02ABEH001782 https://www.mathnet.ru/eng/sm/v150/i2/p212
|
Statistics & downloads: |
Abstract page: | 351 | Russian version PDF: | 120 | English version PDF: | 13 | References: | 54 |
|