Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 50, Issue 1, Pages 41–66
DOI: https://doi.org/10.1070/SM1985v050n01ABEH002732
(Mi sm2273)
 

On properties of functions of bounded variation on a set

T. P. Lukashenko
References:
Abstract: The Kolmogorov inequality for conjugate functions is generalized in § 1. Theorem 2 is the main result; it shows, for example, that if a function $F$ is $2\pi$-periodic to within linearity and of bounded variation in the narrow sense on a set $E\subset[0,2\pi)$, then for any $\lambda>0$
$$ \bigg|\bigg\{x\in E:\sup_{0\leqslant r>1}|\overline{F'}(r,x)|>\lambda\bigg\}\bigg|^*\leqslant\frac C\lambda{\operatornamewithlimits{Var}_E}^*F. $$

In § 2 a well-known theorem of F. and M. Riesz is generalized. In particular, the following is proved.
Theorem 5. {\it Suppose that a $2\pi$-periodic integrable function $\Phi$ and its conjugate $\overline\Phi$ are defined everywhere$,$ bounded$,$ and of bounded variation in the narrow sense on a set $E\subset[0,2\pi),$ and that $\Phi(x)=\lim_{E\ni t\to x}\Phi(t)$ and $\overline\Phi(x)=\lim_{E\ni t\to x}\overline\Phi(t)$ if $\lim_{E\ni t\to x}\Phi(t)$ and $\lim_{E\ni t\to x}\overline\Phi(t)$ exist at a point $x$. Then $\Phi$ and $\overline\Phi$ are absolutely continuous in the narrow sense on $E$.}
Bibliography: 14 titles.
Received: 24.06.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 122(164), Number 1(9), Pages 41–63
Bibliographic databases:
UDC: 517.51
MSC: Primary 26A45, 26A46, 42A50; Secondary 26A39, 26A42, 30E99
Language: English
Original paper language: Russian
Citation: T. P. Lukashenko, “On properties of functions of bounded variation on a set”, Mat. Sb. (N.S.), 122(164):1(9) (1983), 41–63; Math. USSR-Sb., 50:1 (1985), 41–66
Citation in format AMSBIB
\Bibitem{Luk83}
\by T.~P.~Lukashenko
\paper On properties of functions of bounded variation on a~set
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 122(164)
\issue 1(9)
\pages 41--63
\mathnet{http://mi.mathnet.ru/sm2273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=715834}
\zmath{https://zbmath.org/?q=an:0609.42010|0559.42005}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 1
\pages 41--66
\crossref{https://doi.org/10.1070/SM1985v050n01ABEH002732}
Linking options:
  • https://www.mathnet.ru/eng/sm2273
  • https://doi.org/10.1070/SM1985v050n01ABEH002732
  • https://www.mathnet.ru/eng/sm/v164/i1/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:684
    Russian version PDF:153
    English version PDF:14
    References:72
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024