Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 46, Issue 3, Pages 353–374
DOI: https://doi.org/10.1070/SM1983v046n03ABEH002939
(Mi sm2256)
 

This article is cited in 5 scientific papers (total in 5 papers)

Best methods for approximating analytic functions given with an error

K. Yu. Osipenko
References:
Abstract: Let $B$ be the class of analytic functions of modulus at most 1 in the disk $|z|<1$, and let $z_1,\dots,z_n$ be distinct points in the interval $(-1,1)$. This article takes up the problem of finding the quantity
$$ r(z_0,z_1,\dots,z_n,\delta)=\inf_T\,\sup_{f \in B}\,\sup_{\|\widetilde f-\overline f\|_\infty\leqslant\delta}\vert f(z_0)-T(\widehat f)|, $$
where the infimum is over all possible methods $T\colon\mathbf R^n\to \mathbf{R}$, $\widetilde f=(\widetilde f_1,\dots,\widetilde f_n)$, $\overline f=(f(z_1),\dots,f(z_n))$. It is determined that, depending on the error $\delta$, the information about the approximate values of functions in $B$ at some of the points can turn out to be superfluous. The order of informativeness of the system $z_1,\dots,z_n$ is found, i.e., the smallest $k$ for which there exists a subsystem $z_{i_1},\dots,z_{i_k}$ such that $r(z_0,z_{i_1},\dots,z_{i_k},\delta)=r(z_0,z_1,\dots,z_n,\delta)$. A best method of approximation is constructed, and the dependence of the order of informativeness on the size of the error $\delta$ is investigated.
Bibliography: 21 titles.
Received: 17.04.1981
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1982, Volume 118(160), Number 3(7), Pages 350–370
Bibliographic databases:
UDC: 517.53
MSC: Primary 30E10, 41A50; Secondary 30D50, 41A25, 41A65, 94A17
Language: English
Original paper language: Russian
Citation: K. Yu. Osipenko, “Best methods for approximating analytic functions given with an error”, Mat. Sb. (N.S.), 118(160):3(7) (1982), 350–370; Math. USSR-Sb., 46:3 (1983), 353–374
Citation in format AMSBIB
\Bibitem{Osi82}
\by K.~Yu.~Osipenko
\paper Best methods for approximating analytic functions given with an error
\jour Mat. Sb. (N.S.)
\yr 1982
\vol 118(160)
\issue 3(7)
\pages 350--370
\mathnet{http://mi.mathnet.ru/sm2256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=663148}
\zmath{https://zbmath.org/?q=an:0514.30027}
\transl
\jour Math. USSR-Sb.
\yr 1983
\vol 46
\issue 3
\pages 353--374
\crossref{https://doi.org/10.1070/SM1983v046n03ABEH002939}
Linking options:
  • https://www.mathnet.ru/eng/sm2256
  • https://doi.org/10.1070/SM1983v046n03ABEH002939
  • https://www.mathnet.ru/eng/sm/v160/i3/p350
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:351
    Russian version PDF:129
    English version PDF:6
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024