Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 45, Issue 3, Pages 337–358
DOI: https://doi.org/10.1070/SM1983v045n03ABEH001011
(Mi sm2212)
 

This article is cited in 6 scientific papers (total in 6 papers)

Free interpolation in the spaces CAr,ω

N. A. Shirokov
References:
Abstract: Let the integer r0 and the modulus of continuity ω(t) be fixed, and let CAr,ω be the class of all functions continuous on the closed unit disk ¯D, analytic on its interior D, and having an ω-continuous rth derivative on ¯D.
Consider for each fCAr,ω and each fixed ζ¯D the polynomial in z
Pr,ζ(z;f)=rν=0f(ν)(ζ)ν!
(the (r+1)st partial sum of the Taylor series of f in a neighborhood of ζ). Then for any two points ζ1,ζ2¯D
|(Pr,ζ1(z)Pr,ζ2(z))(ν)|z=ζ1cf|ζ1ζ2|rνω(|ζ1ζ2|),P,()=P,(;f),0νr.

Let E be a closed subset of ¯D. This article contains a solution of the problem of free interpolation in CAr,ω, formulated as follows: find necessary and sufficient conditions on E such that for each collection {Pζ}ζE of rth-degree polynomials satisfying conditions of the type (1.1) for all ζ1,ζ2E there is a function fCAr,ω with Pζ()=Pr,ζ(;f).
Bibliography: 13 titles.
Received: 10.02.1981
Bibliographic databases:
UDC: 517.57
MSC: Primary 30E05; Secondary 26A15, 30C10, 46E15, 54C20
Language: English
Original paper language: Russian
Citation: N. A. Shirokov, “Free interpolation in the spaces CAr,ω”, Math. USSR-Sb., 45:3 (1983), 337–358
Citation in format AMSBIB
\Bibitem{Shi82}
\by N.~A.~Shirokov
\paper Free interpolation in the spaces $ C^A_{r,\omega}$
\jour Math. USSR-Sb.
\yr 1983
\vol 45
\issue 3
\pages 337--358
\mathnet{http://mi.mathnet.ru/eng/sm2212}
\crossref{https://doi.org/10.1070/SM1983v045n03ABEH001011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=648412}
\zmath{https://zbmath.org/?q=an:0515.30024}
Linking options:
  • https://www.mathnet.ru/eng/sm2212
  • https://doi.org/10.1070/SM1983v045n03ABEH001011
  • https://www.mathnet.ru/eng/sm/v159/i3/p337
  • This publication is cited in the following 6 articles:
    1. St. Petersburg Math. J., 21:6 (2010), 979–993  mathnet  crossref  mathscinet  zmath  isi
    2. A. V. Vasin, “Boundary interpolation in the weak Lipschitz classes”, J. Math. Sci. (N. Y.), 156:5 (2009), 761–765  mathnet  crossref  zmath  elib
    3. A. M. Kotochigov, “Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space”, J. Math. Sci. (N. Y.), 129:4 (2005), 4022–4039  mathnet  crossref  mathscinet  zmath
    4. Dynkin E., “The Pseudoanalytic Extension”, J. Anal. Math., 60 (1993), 45–70  crossref  mathscinet  zmath  isi
    5. N. A. Shirokov, “A note on Fuchsian groups”, J Math Sci, 42:2 (1988), 1668  crossref
    6. E. M. Dyn'kin, “Free interpolation by functions with derivatives in H1”, J Math Sci, 27:1 (1984), 2475  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:374
    Russian version PDF:99
    English version PDF:24
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025