Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 45, Issue 3, Pages 337–358
DOI: https://doi.org/10.1070/SM1983v045n03ABEH001011
(Mi sm2212)
 

This article is cited in 6 scientific papers (total in 6 papers)

Free interpolation in the spaces $ C^A_{r,\omega}$

N. A. Shirokov
References:
Abstract: Let the integer $r\geqslant0$ and the modulus of continuity $\omega(t)$ be fixed, and let $C^A_{r,\omega}$ be the class of all functions continuous on the closed unit disk $\overline D$, analytic on its interior $D$, and having an $\omega$-continuous $r$th derivative on $\overline D$.
Consider for each $f\in C^A_{r,\omega}$ and each fixed $\zeta\in\overline D$ the polynomial in $z$
$$ P_{r,\zeta}(z;f)=\sum_{\nu=0}^r \dfrac{f^{(\nu)}(\zeta)}{\nu!} $$
(the $(r+1)$st partial sum of the Taylor series of $f$ in a neighborhood of $\zeta$). Then for any two points $\zeta_1,\zeta_2\in\overline D$
\begin{equation} \begin{gathered} |(P_{r,\zeta_1}(z)-P_{r,\zeta_2}(z))^{(\nu)}|_{z=\zeta_1}\leqslant c_f|\zeta_1-\zeta_2|^{r-\nu}\omega(|\zeta_1-\zeta_2|), \\ P_{\,\cdot\,,\,\cdot\,}(\,\cdot\,)=P_{\,\cdot\,,\,\cdot\,}(\,\cdot\,;f),\qquad 0\leqslant\nu\leqslant r. \end{gathered} \tag{1.1} \end{equation}

Let $E$ be a closed subset of $\overline D$. This article contains a solution of the problem of free interpolation in $C^A_{r,\omega}$, formulated as follows: find necessary and sufficient conditions on $E$ such that for each collection $\{P_\zeta\}_{\zeta\in E}$ of $r$th-degree polynomials satisfying conditions of the type (1.1) for all $\zeta_1,\zeta_2\in E$ there is a function $f\in C^A_{r,\omega}$ with $P_\zeta(\,\cdot\,)=P_{r,\zeta}(\,\cdot\,;f)$.
Bibliography: 13 titles.
Received: 10.02.1981
Bibliographic databases:
UDC: 517.57
MSC: Primary 30E05; Secondary 26A15, 30C10, 46E15, 54C20
Language: English
Original paper language: Russian
Citation: N. A. Shirokov, “Free interpolation in the spaces $ C^A_{r,\omega}$”, Math. USSR-Sb., 45:3 (1983), 337–358
Citation in format AMSBIB
\Bibitem{Shi82}
\by N.~A.~Shirokov
\paper Free interpolation in the spaces $ C^A_{r,\omega}$
\jour Math. USSR-Sb.
\yr 1983
\vol 45
\issue 3
\pages 337--358
\mathnet{http://mi.mathnet.ru//eng/sm2212}
\crossref{https://doi.org/10.1070/SM1983v045n03ABEH001011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=648412}
\zmath{https://zbmath.org/?q=an:0515.30024}
Linking options:
  • https://www.mathnet.ru/eng/sm2212
  • https://doi.org/10.1070/SM1983v045n03ABEH001011
  • https://www.mathnet.ru/eng/sm/v159/i3/p337
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:88
    English version PDF:13
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024