Abstract:
In this paper properties of the discrete Sturm–Liouville operator are considered, and the scattering problem for this operator is studied using asymptotic formulas for orthogonal polynomials with matrix coefficients.
Bibliography: 22 titles.
\Bibitem{AptNik83}
\by A.~I.~Aptekarev, E.~M.~Nikishin
\paper The scattering problem for a~discrete Sturm--Liouville operator
\jour Math. USSR-Sb.
\yr 1984
\vol 49
\issue 2
\pages 325--355
\mathnet{http://mi.mathnet.ru/eng/sm2205}
\crossref{https://doi.org/10.1070/SM1984v049n02ABEH002713}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=708000}
\zmath{https://zbmath.org/?q=an:0557.34017|0527.34024}
Linking options:
https://www.mathnet.ru/eng/sm2205
https://doi.org/10.1070/SM1984v049n02ABEH002713
https://www.mathnet.ru/eng/sm/v163/i3/p327
This publication is cited in the following 106 articles:
Reinis Irmejs, Raul A. Santos, “Approximating dynamical correlation functions with constant depth quantum circuits”, Quantum, 9 (2025), 1639
Juan Carlos García-Ardila, “A Note on the Matrix Moment Problem and its Relation with Matrix Biorthogonal Polynomials”, Results Math, 79:4 (2024)
Miguel Ballesteros, Gerardo Franco Córdova, Ivan Naumkin, Hermann Schulz-Baldes, “Levinson theorem for discrete Schrödinger operators on the line with matrix potentials having a first moment”, Commun. Contemp. Math., 26:07 (2024)
Amílcar Branquinho, Ana Foulquié-Moreno, Assil Fradi, Manuel Mañas, Coimbra Mathematical Texts, 3, Orthogonal Polynomials and Special Functions, 2024, 23
E. Korotyaev, E. Leonova, “Inverse Resonance Problem for Jacobi Operators on a Half-Lattice”, Russ. J. Math. Phys., 30:3 (2023), 320
Alexander Sakhnovich, “Discrete Self-adjoint Dirac Systems: Asymptotic Relations, Weyl Functions and Toeplitz Matrices”, Constr Approx, 55:2 (2022), 641
Miguel Ballesteros, Gerardo Franco, Guillermo Garro, Hermann Schulz-Baldes, “Band Edge Limit of the Scattering Matrix for Quasi-One-Dimensional Discrete Schrödinger Operators”, Complex Anal. Oper. Theory, 16:2 (2022)
Amílcar Branquinho, Ana Foulquié Moreno, Assil Fradi, Manuel Mañas, “Riemann–Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painlevé IV”, Mathematics, 10:8 (2022), 1205
Andrey Osipov, “Deficiency indices of block Jacobi matrices and Miura transformation”, Special Matrices, 10:1 (2022), 234
Duenas H., Fuentes E., Garza L.E., “Matrix Uvarov Transformation on the Unit Circle: Asymptotic Properties”, Bull. Malays. Math. Sci. Soc., 44:1 (2021), 279–315
Amílcar Branquinho, Ana Foulquié Moreno, Manuel Mañas, “Matrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painlevé equations”, Journal of Mathematical Analysis and Applications, 494:2 (2021), 124605
E. Fuentes, L.E. Garza, H. Dueñas, “On the Szegő transformation for some spectral perturbations of matrix measures”, Journal of Mathematical Analysis and Applications, 499:1 (2021), 125036
Amílcar Branquinho, Ana Foulquié-Moreno, Manuel Mañas-Baena, SEMA SIMAI Springer Series, 22, Orthogonal Polynomials: Current Trends and Applications, 2021, 1
H. Dueñas, E. Fuentes, L. E. Garza, “On a Christoffel Transformation for Matrix Measures Supported on the Unit Circle”, Comput. Methods Funct. Theory, 21:2 (2021), 219
E. L. Korotyaev, “Obratnye zadachi dlya konechnykh vektornoznachnykh operatorov Yakobi”, Funkts. analiz i ego pril., 53:3 (2019), 23–32
Giovanni A. Cassatella‐Contra, Manuel Mañas, “Riemann‐Hilbert problem and matrix discrete Painlevé II systems”, Stud Appl Math, 143:3 (2019), 272
Gerardo Ariznabarreta, Juan C. García-Ardila, Manuel Mañas, Francisco Marcellán, “Matrix biorthogonal polynomials on the real line: Geronimus transformations”, Bull. Math. Sci., 09:02 (2019), 1950007
Erik Koelink, Pablo Román, Trends in Mathematics, Positivity and Noncommutative Analysis, 2019, 295
Mourad E.H. Ismail, Erik Koelink, Pablo Román, “Matrix valued Hermite polynomials, Burchnall formulas and non-abelian Toda lattice”, Advances in Applied Mathematics, 110 (2019), 235
Gerardo Ariznabarreta, Juan C García-Ardila, Manuel Mañas, Francisco Marcellán, “Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations”, J. Phys. A: Math. Theor., 51:20 (2018), 205204