Abstract:
Complete asymptotic expansions are obtained for the integrated state density and the spectral function of a Hill operator with smooth potential. These expansions can be differentiated any number of times outside small neighborhoods of forbidden zones.
Bibliography: 18 titles.
Citation:
D. Schenk, M. A. Shubin, “Asymptotic expansion of the state density and the spectral function of a Hill operator”, Math. USSR-Sb., 56:2 (1987), 473–490
\Bibitem{SchShu85}
\by D.~Schenk, M.~A.~Shubin
\paper Asymptotic expansion of the state density and the spectral function of a~Hill operator
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 473--490
\mathnet{http://mi.mathnet.ru/eng/sm2178}
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=820398}
\zmath{https://zbmath.org/?q=an:0624.34018|0604.34015}
Linking options:
https://www.mathnet.ru/eng/sm2178
https://doi.org/10.1070/SM1987v056n02ABEH003047
https://www.mathnet.ru/eng/sm/v170/i4/p474
This publication is cited in the following 12 articles: