Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 2, Pages 473–490
DOI: https://doi.org/10.1070/SM1987v056n02ABEH003047
(Mi sm2178)
 

This article is cited in 11 scientific papers (total in 12 papers)

Asymptotic expansion of the state density and the spectral function of a Hill operator

D. Schenk, M. A. Shubin
References:
Abstract: Complete asymptotic expansions are obtained for the integrated state density and the spectral function of a Hill operator with smooth potential. These expansions can be differentiated any number of times outside small neighborhoods of forbidden zones.
Bibliography: 18 titles.
Received: 24.07.1984
Bibliographic databases:
UDC: 517.984.5
MSC: Primary 34B25, 34B30, 34E05; Secondary 35J10, 70H99
Language: English
Original paper language: Russian
Citation: D. Schenk, M. A. Shubin, “Asymptotic expansion of the state density and the spectral function of a Hill operator”, Math. USSR-Sb., 56:2 (1987), 473–490
Citation in format AMSBIB
\Bibitem{SchShu85}
\by D.~Schenk, M.~A.~Shubin
\paper Asymptotic expansion of the state density and the spectral function of a~Hill operator
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 473--490
\mathnet{http://mi.mathnet.ru/eng/sm2178}
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=820398}
\zmath{https://zbmath.org/?q=an:0624.34018|0604.34015}
Linking options:
  • https://www.mathnet.ru/eng/sm2178
  • https://doi.org/10.1070/SM1987v056n02ABEH003047
  • https://www.mathnet.ru/eng/sm/v170/i4/p474
  • This publication is cited in the following 12 articles:
    1. H. Boumaza, O. Lafitte, “Integrated density of states: From the finite range to the periodic Airy–Schrödinger operator”, Journal of Mathematical Physics, 62:4 (2021)  crossref
    2. M. Braverman, V. M. Buchstaber, M. Gromov, V. Ivrii, Yu. A. Kordyukov, P. Kuchment, V. Maz'ya, S. P. Novikov, T. Sunada, L. Friedlander, A. G. Khovanskii, “Mikhail Aleksandrovich Shubin (obituary)”, Russian Math. Surveys, 75:6 (2020), 1143–1152  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Leonid Parnovski, Roman Shterenberg, “Complete asymptotic expansion of the spectral function of multidimensional almost-periodic Schrödinger operators”, Duke Math. J., 165:3 (2016)  crossref
    4. Sergey Morozov, Leonid Parnovski, Roman Shterenberg, “Complete Asymptotic Expansion of the Integrated Density of States of Multidimensional Almost-Periodic Pseudo-Differential Operators”, Ann. Henri Poincaré, 2013  crossref  mathscinet
    5. Yulia Karpeshina, Young-Ran Lee, “Spectral properties of a limit-periodic Schrödinger operator in dimension two”, JAMA, 120:1 (2013), 1  crossref  mathscinet  zmath
    6. Leonid Parnovski, Roman Shterenberg, “Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators”, Ann. Math, 176:2 (2012), 1039  crossref  mathscinet  zmath
    7. Schwarzenberger F., “Uniform Approximation of the Integrated Density of States for Long-Range Percolation Hamiltonians”, J. Stat. Phys., 146:6 (2012), 1156–1183  crossref  mathscinet  zmath  adsnasa  isi
    8. Leonid Parnovski, Roman Shterenberg, “Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator”, Invent math, 2008  crossref  mathscinet  isi
    9. Antoniou I. Ilin V., “The Uniform, Over the Whole Line R Estimates of Spectral Expansions Related to the Selfadjoint Extensions of the Hill Operator and of the Schrodinger Operator with a Bounded and Measurable Potential”, Comput. Math. Appl., 34:5-6 (1997), 627–632  crossref  mathscinet  zmath  isi
    10. Ilin V., Antoniou I., “On the Uniform Equiconvergence with the Fourier Integral, on the Whole Line R, for an Arbitrary l(P)(R) Function, of the Spectral Expansion Related to the Selfadjoint Extension of the Hill Operator”, Differ. Equ., 31:8 (1995), 1253–1266  mathnet  mathscinet  zmath  isi
    11. Yu. V. Egorov, M. A. Shubin, Encyclopaedia of Mathematical Sciences, 31, Partial Differential Equations II, 1994, 1  crossref
    12. Volovoy A., “Improved 2-Term Asymptotics for the Eigenvalue Distribution Function of an Elliptic Operator on a Compact Manifold”, Commun. Partial Differ. Equ., 15:11 (1990), 1509–1563  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:515
    Russian version PDF:132
    English version PDF:23
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025