Abstract:
Duality theorems are proved in a mass formulation for non-topological variants of the mass transfer problem and of related extremal marginal problems. The connection between two types of problem is investigated (problems with fixed difference between the marginal measures, and problems with fixed marginal measures), and a criterion for their equivalence is obtained.
\Bibitem{Lev97}
\by V.~L.~Levin
\paper On duality theory for non-topological variants of the~mass transfer problem
\jour Sb. Math.
\yr 1997
\vol 188
\issue 4
\pages 571--602
\mathnet{http://mi.mathnet.ru/eng/sm217}
\crossref{https://doi.org/10.1070/sm1997v188n04ABEH000217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1462030}
\zmath{https://zbmath.org/?q=an:0908.49028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XP47500010}
\elib{https://elibrary.ru/item.asp?id=13259272}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286034}
Linking options:
https://www.mathnet.ru/eng/sm217
https://doi.org/10.1070/sm1997v188n04ABEH000217
https://www.mathnet.ru/eng/sm/v188/i4/p95
This publication is cited in the following 13 articles: