|
This article is cited in 2 scientific papers (total in 2 papers)
Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters
D. G. Vasil'ev
Abstract:
The eigenvalue problem
$$
L(\varepsilon,h)f\equiv\varepsilon^{m_0}A_0f+\sum^l_{j=1}h_j\varepsilon^{m_j}A_jf=\lambda f.
$$
is considered on an $n$-dimensional compact manifold without boundary. Here the $A_k$, $k=0,1,\dots,l$, are symmetric scalar classical pseudodifferential operators of orders $m_k$ with leading symbols $a_k(x,\xi)$, $m_0>0$, $m_0\geqslant m_k\geqslant0$, $a_0(x,\xi)>0$ and $\varepsilon$, $h_j$, $j=1,2,\dots,l$, are small real parameters with $\varepsilon>0$ and $h_j=O(\varepsilon^{1/p})$, where $p$ is a positive integer. The distribution functions $n(\lambda,L(\varepsilon,h))$ of the eigenvalues of the operator $L(\varepsilon,h)$ are studied. Let $[\Lambda_1,\Lambda_2]$ be a fixed interval of the positive half-line ($\Lambda_1>0$). An asymptotic formula with optimal relative error $O(\varepsilon)$ is obtained for $n(\lambda,L(\varepsilon,h))$ as $\varepsilon\to0$ when $\lambda\in[\Lambda_1,\Lambda_2]$.
Bibliography: 10 titles.
Received: 03.02.1982
Citation:
D. G. Vasil'ev, “Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters”, Math. USSR-Sb., 49:1 (1984), 61–72
Linking options:
https://www.mathnet.ru/eng/sm2154https://doi.org/10.1070/SM1984v049n01ABEH002697 https://www.mathnet.ru/eng/sm/v163/i1/p60
|
Statistics & downloads: |
Abstract page: | 259 | Russian version PDF: | 98 | English version PDF: | 7 | References: | 58 |
|