|
This article is cited in 3 scientific papers (total in 3 papers)
On Jordan algebras that are solvable of index 2
S. R. Sverchkov
Abstract:
Suppose $\Phi$ is a commutative associative ring containing $1/2$. It is shown that any solvable Jordan algebra of index 2 over $\Phi$ is special. Solvable Jordan algebras of index 3 need not be special.
Bibliography: 6 titles.
Received: 02.12.1981
Citation:
S. R. Sverchkov, “On Jordan algebras that are solvable of index 2”, Mat. Sb. (N.S.), 121(163):1(5) (1983), 40–47; Math. USSR-Sb., 49:1 (1984), 41–48
Linking options:
https://www.mathnet.ru/eng/sm2152https://doi.org/10.1070/SM1984v049n01ABEH002695 https://www.mathnet.ru/eng/sm/v163/i1/p40
|
Statistics & downloads: |
Abstract page: | 304 | Russian version PDF: | 105 | English version PDF: | 12 | References: | 49 |
|