Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 1, Pages 262–278
DOI: https://doi.org/10.1070/SM1987v056n01ABEH003035
(Mi sm2127)
 

This article is cited in 6 scientific papers (total in 6 papers)

A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere

R. D. Getsadze
References:
Abstract: It is proved that there exists a continuous function defined on [0,1]k2 whose double Fourier–Walsh–Paley series diverges almost everywhere in the sense of Pringsheim.
Bibliography: 9 titles
Received: 19.06.1984
Bibliographic databases:
UDC: 517.51
MSC: 42C10, 42B05
Language: English
Original paper language: Russian
Citation: R. D. Getsadze, “A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere”, Math. USSR-Sb., 56:1 (1987), 262–278
Citation in format AMSBIB
\Bibitem{Get85}
\by R.~D.~Getsadze
\paper A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 1
\pages 262--278
\mathnet{http://mi.mathnet.ru/eng/sm2127}
\crossref{https://doi.org/10.1070/SM1987v056n01ABEH003035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=809489}
\zmath{https://zbmath.org/?q=an:0606.42026}
Linking options:
  • https://www.mathnet.ru/eng/sm2127
  • https://doi.org/10.1070/SM1987v056n01ABEH003035
  • https://www.mathnet.ru/eng/sm/v170/i2/p269
  • This publication is cited in the following 6 articles:
    1. S. A. Sargsyan, L. N. Galoyan, “On the Uniform Convergence of Spherical Partial Sums of Fourier Series by the Double Walsh System”, J. Contemp. Mathemat. Anal., 58:5 (2023), 370  crossref
    2. S. K. Bloshanskaya, I. L. Bloshanskii, “A weak generalized localization criterion for multiple Walsh–Fourier series with $J_k$-lacunary sequence of rectangular partial sums”, Proc. Steklov Inst. Math., 285 (2014), 34–55  mathnet  crossref  crossref  isi  elib  elib
    3. G. A. Karagulyan, K. R. Muradyan, “On the divergence of Walsh and Haar series by sectorial and triangular regions”, Uch. zapiski EGU, ser. Fizika i Matematika, 2014, no. 2, 3–12  mathnet
    4. Bloshanskaya S.K., Bloshanskii I.L., “Local smoothness conditions on a function which guarantee convergence of double Walsh-Fourier series of this function”, Wavelet Analysis and Applications, Applied and Numerical Harmonic Analysis, 2007, 3–11  crossref  mathscinet  zmath  isi
    5. S. K. Bloshanskaya, I. L. Bloshanskii, T. Yu. Roslova, “Generalized localization for the double trigonometric Fourier series and the Walsh–Fourier series of functions in $L\log^+L\log^+\log^+L$”, Sb. Math., 189:5 (1998), 657–682  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. S. K. Bloshanskaya, I. L. Bloshanskii, “Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$”, Sb. Math., 186:2 (1995), 181–196  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:576
    Russian version PDF:251
    English version PDF:35
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025