Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 1, Pages 211–221
DOI: https://doi.org/10.1070/SM1984v048n01ABEH002671
(Mi sm2120)
 

This article is cited in 3 scientific papers (total in 3 papers)

On a problem for integral convolution operators

V. D. Stepanov
References:
Abstract: This article considers convolution operators $T_k\colon L^2(R^N)\to L^2(R^N)$ of the form $T_kf(x)=\int_{R^N}k(x-y)f(y)\,dy$ which are integral operators on the whole class $L^2(R^N)$, i.e., the kernel $k(x)$ is such that $\int_{R^N}|k(x-y)f(y)|\,dy<\infty$ for almost all $x\in R^N$. An answer is obtained to the following question of Korotkov: if $T_k\colon L^2(R^N)\to L^2(R^N)$ is a convolution operator which is an integral operator on the whole of $L^2(R^N)$, does it follow that $\operatorname{mes}\{\xi\in R^N:|k^\wedge(\xi)|>\lambda\}<\infty$ for any $\lambda>0$? Here $k^\wedge(\xi)$ is the Fourier transform of $k(x)$. An example answering the question in the negative is given by the operator $T_{\mathscr K}\colon L^2(R^1)\to L^2(R^1)$ with kernel $\mathscr K(x)$ such that $\mathscr K^\wedge(\xi)=\sum\limits_{n\ne0}\operatorname{sign}n\chi_{\bigl[-\frac1{2|n|},\frac1{2|n|}\bigr]}(\xi-n),$ where $\chi_{[a,b]}$ is the characteristic function of $[a,b]$.
Bibliography: 4 titles.
Received: 29.04.1982
Bibliographic databases:
UDC: 517.444
MSC: Primary 44A35, 47G05; Secondary 42B10
Language: English
Original paper language: Russian
Citation: V. D. Stepanov, “On a problem for integral convolution operators”, Math. USSR-Sb., 48:1 (1984), 211–221
Citation in format AMSBIB
\Bibitem{Ste83}
\by V.~D.~Stepanov
\paper On a~problem for integral convolution operators
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 1
\pages 211--221
\mathnet{http://mi.mathnet.ru//eng/sm2120}
\crossref{https://doi.org/10.1070/SM1984v048n01ABEH002671}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687614}
\zmath{https://zbmath.org/?q=an:0542.45010|0527.45006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SV65300013}
Linking options:
  • https://www.mathnet.ru/eng/sm2120
  • https://doi.org/10.1070/SM1984v048n01ABEH002671
  • https://www.mathnet.ru/eng/sm/v162/i2/p216
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:449
    Russian version PDF:109
    English version PDF:15
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024