Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 3, Pages 371–387
DOI: https://doi.org/10.1070/sm1997v188n03ABEH000210
(Mi sm210)
 

This article is cited in 10 scientific papers (total in 10 papers)

Asymptotic behaviour of the solutions of inverse problems for parabolic equations with irregular coefficients

I. A. Vasin, V. L. Kamynin

Moscow Engineering Physics Institute (State University)
References:
Abstract: The problem of asymptotic proximity as $t\to\infty$ of the solutions of the inverse problem for a parabolic equation with an unknown right-hand side and the solution of the limiting stationary inverse problem in a bounded domain is studied. The overdetermination conditions are given in integral form. The conditions on the proximity of the coefficients of the stationary and the non-stationary problems are formulated in a certain very weak sense, which allows, in particular, oscillations of the coefficients.
Received: 25.03.1996
Russian version:
Matematicheskii Sbornik, 1997, Volume 188, Number 3, Pages 49–64
DOI: https://doi.org/10.4213/sm210
Bibliographic databases:
UDC: 517.956
MSC: 35R30
Language: English
Original paper language: Russian
Citation: I. A. Vasin, V. L. Kamynin, “Asymptotic behaviour of the solutions of inverse problems for parabolic equations with irregular coefficients”, Mat. Sb., 188:3 (1997), 49–64; Sb. Math., 188:3 (1997), 371–387
Citation in format AMSBIB
\Bibitem{VasKam97}
\by I.~A.~Vasin, V.~L.~Kamynin
\paper Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 3
\pages 49--64
\mathnet{http://mi.mathnet.ru/sm210}
\crossref{https://doi.org/10.4213/sm210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1462023}
\zmath{https://zbmath.org/?q=an:0887.35165}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 3
\pages 371--387
\crossref{https://doi.org/10.1070/sm1997v188n03ABEH000210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XP47500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286028}
Linking options:
  • https://www.mathnet.ru/eng/sm210
  • https://doi.org/10.1070/sm1997v188n03ABEH000210
  • https://www.mathnet.ru/eng/sm/v188/i3/p49
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:478
    Russian version PDF:209
    English version PDF:20
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024