|
This article is cited in 9 scientific papers (total in 9 papers)
Approximation of subharmonic functions
R. S. Yulmukhametov
Abstract:
Given an arbitrary subharmonic function of finite order on the plane, an entire function $f(z)$ is constructed which satisfies the asymptotic relation
$$
|u(z)-\ln|f(z)||\leqslant C\ln^2|z|,\qquad|z|\to\infty,
$$
outside a sufficiently small exceptional set $E$. Functions with a logarithmic estimate are constructed in some special cases.
Bibliography: 3 titles.
Received: 14.06.1983
Citation:
R. S. Yulmukhametov, “Approximation of subharmonic functions”, Mat. Sb. (N.S.), 124(166):3(7) (1984), 393–415; Math. USSR-Sb., 52:2 (1985), 387–406
Linking options:
https://www.mathnet.ru/eng/sm2058https://doi.org/10.1070/SM1985v052n02ABEH002896 https://www.mathnet.ru/eng/sm/v166/i3/p393
|
Statistics & downloads: |
Abstract page: | 435 | Russian version PDF: | 160 | English version PDF: | 12 | References: | 57 |
|