Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 1, Pages 181–208
DOI: https://doi.org/10.1070/SM1985v052n01ABEH002884
(Mi sm2047)
 

This article is cited in 10 scientific papers (total in 10 papers)

Systems of Wiener–Hopf integral equations, and nonlinear factorization equations

N. B. Engibaryan, L. G. Arabadzhyan
References:
Abstract: Systems of Wiener–Hopf integral equations
\begin{equation} f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt \end{equation}
and corresponding nonlinear factorization equations
\begin{align} U(x)&=T(x)+\int_0^\infty V(t)U(x+t)\,dt, \nonumber \\ V(x)&=T(-x)+\int_0^\infty V(x+t)U(t)\,dt,\qquad x>0, \end{align}
are studied. It is assumed that $T$ is a matrix-valued function with nonnegative components from $L_1(-\infty,\infty)$, with $\mu=r(A)\leqslant1$, where $\displaystyle A=\int_{-\infty}^\infty T(x)\,dx$, and $r(A)$ is the spectral radius of the matrix $A$.
The conservative case $\mu=1$, to which major attention is given, falls outside the general theory of Wiener–Hopf integral equations, since the symbol of equation (1) degenerates.
A number of results have been obtained about the properties of the solution of the factorization equation (2), and about the existence, asymptotics and other properties of the solution of the homogeneous and nonhomogeneous conservative equation (1).
Bibliography: 21 titles.
Received: 19.04.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1984, Volume 124(166), Number 2(6), Pages 189–216
Bibliographic databases:
UDC: 517.9
MSC: 45F15, 45E10
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, L. G. Arabadzhyan, “Systems of Wiener–Hopf integral equations, and nonlinear factorization equations”, Mat. Sb. (N.S.), 124(166):2(6) (1984), 189–216; Math. USSR-Sb., 52:1 (1985), 181–208
Citation in format AMSBIB
\Bibitem{EngAra84}
\by N.~B.~Engibaryan, L.~G.~Arabadzhyan
\paper Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 124(166)
\issue 2(6)
\pages 189--216
\mathnet{http://mi.mathnet.ru/sm2047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=746067}
\zmath{https://zbmath.org/?q=an:0582.45017|0566.45007}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 181--208
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002884}
Linking options:
  • https://www.mathnet.ru/eng/sm2047
  • https://doi.org/10.1070/SM1985v052n01ABEH002884
  • https://www.mathnet.ru/eng/sm/v166/i2/p189
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:741
    Russian version PDF:173
    English version PDF:33
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024