Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 1, Pages 155–180
DOI: https://doi.org/10.1070/SM1985v052n01ABEH002883
(Mi sm2046)
 

This article is cited in 15 scientific papers (total in 15 papers)

On approximate self-similar solutions of a class of quasilinear heat equations with a source

V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii
References:
Abstract: Quasilinear parabolic equations of the form
$$ \frac{\partial u}{\partial t}=\nabla(k(u)\nabla u)+Q(u),\qquad\nabla(\,\cdot\,) =\operatorname{grad}_x(\,\cdot\,),\quad k\geqslant0, $$
are considered; here $k(u)$ and $Q(u)$ are sufficiently smooth given functions (respectively, the coefficient of thermal conductivity and the power of heat sources depending on the temperature $u=u(t,x)\geqslant0$). A family of coefficients $\{k\}$ and corresponding functions $\{Q_k\}$ is distinguished for which the properties of the solution of the boundary value problem for the equation in question are described by invariant solutions $v_A(t,x)$ of a first-order equation of Hamilton–Jacobi type
$$ \frac{\partial v}{\partial t}=\frac{k(v)}{v+1}(\nabla v)^2 +G(t)\nabla\mathbf{vx}+H(t)Q_k(v). $$
The function $u_A$ is an approximate self-similar solution of the original equation.
Tables: 1.
Figures: 1.
Bibliography: 70 titles.
Received: 18.11.1983
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1984, Volume 124(166), Number 2(6), Pages 163–188
Bibliographic databases:
UDC: 517.95
MSC: 35K05, 35K55, 35A35
Language: English
Original paper language: Russian
Citation: V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On approximate self-similar solutions of a class of quasilinear heat equations with a source”, Mat. Sb. (N.S.), 124(166):2(6) (1984), 163–188; Math. USSR-Sb., 52:1 (1985), 155–180
Citation in format AMSBIB
\Bibitem{GalKurSam84}
\by V.~A.~Galaktionov, S.~P.~Kurdyumov, A.~A.~Samarskii
\paper On approximate self-similar solutions of a~class of quasilinear heat equations with a~source
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 124(166)
\issue 2(6)
\pages 163--188
\mathnet{http://mi.mathnet.ru/sm2046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=746066}
\zmath{https://zbmath.org/?q=an:0573.35049}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 155--180
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002883}
Linking options:
  • https://www.mathnet.ru/eng/sm2046
  • https://doi.org/10.1070/SM1985v052n01ABEH002883
  • https://www.mathnet.ru/eng/sm/v166/i2/p163
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:603
    Russian version PDF:272
    English version PDF:14
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024