Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 51, Issue 2, Pages 389–404
DOI: https://doi.org/10.1070/SM1985v051n02ABEH002865
(Mi sm2027)
 

This article is cited in 17 scientific papers (total in 17 papers)

A theorem on comparison of spectra, and spectral asymptotics for a Keldysh pencil

A. S. Markus, V. I. Matsaev
References:
Abstract: Suppose that $H$ is a normal operator, the pencil $L_0(\lambda)=I-\lambda^nH^n$ has a discrete and positive spectrum in the domain $\Omega(2\theta,R)=\{\lambda:\lvert\arg\lambda\rvert<2\theta,\ |\lambda|>R\}$, and $S(\lambda)$ is an operator-valued function that is holomorphic in $\Omega(2\theta,R)$ and small in comparison to $L_0(\lambda)$ (in a certain sense). A theorem is proved on comparison of the spectra of $L(\lambda)=L_0(\lambda)-S(\lambda)$ and $L_0(\lambda)$, i.e., on an estimate of the difference $N(r)-N_0(r)$, where $N(r)$ ($N_0(r)$) is the distribution function of the spectrum of $L(\lambda)$ ($L_0(\lambda)$) in $\Omega(\theta,\rho)$ ($\rho\geqslant R$). This result implies generalizations of theorems of Keldysh on the asymptotic behavior of the spectrum of a polynomial operator pencil.
Bibliography: 14 titles.
Received: 23.07.1981
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1984, Volume 123(165), Number 3, Pages 391–406
Bibliographic databases:
UDC: 517.984
MSC: Primary 47A10, 47A55; Secondary 47A53, 47B05, 47B10, 47B15
Language: English
Original paper language: Russian
Citation: A. S. Markus, V. I. Matsaev, “A theorem on comparison of spectra, and spectral asymptotics for a Keldysh pencil”, Mat. Sb. (N.S.), 123(165):3 (1984), 391–406; Math. USSR-Sb., 51:2 (1985), 389–404
Citation in format AMSBIB
\Bibitem{MarMat84}
\by A.~S.~Markus, V.~I.~Matsaev
\paper A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 123(165)
\issue 3
\pages 391--406
\mathnet{http://mi.mathnet.ru/sm2027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=735713}
\zmath{https://zbmath.org/?q=an:0603.47018|0562.47014}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 2
\pages 389--404
\crossref{https://doi.org/10.1070/SM1985v051n02ABEH002865}
Linking options:
  • https://www.mathnet.ru/eng/sm2027
  • https://doi.org/10.1070/SM1985v051n02ABEH002865
  • https://www.mathnet.ru/eng/sm/v165/i3/p391
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:646
    Russian version PDF:188
    English version PDF:21
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024