|
This article is cited in 17 scientific papers (total in 17 papers)
A theorem on comparison of spectra, and spectral asymptotics for a Keldysh pencil
A. S. Markus, V. I. Matsaev
Abstract:
Suppose that $H$ is a normal operator, the pencil $L_0(\lambda)=I-\lambda^nH^n$ has a discrete and positive spectrum in the domain $\Omega(2\theta,R)=\{\lambda:\lvert\arg\lambda\rvert<2\theta,\ |\lambda|>R\}$, and $S(\lambda)$ is an operator-valued function that is holomorphic in $\Omega(2\theta,R)$ and small in comparison to $L_0(\lambda)$ (in a certain sense). A theorem is proved on comparison of the spectra of $L(\lambda)=L_0(\lambda)-S(\lambda)$ and $L_0(\lambda)$, i.e., on an estimate of the difference $N(r)-N_0(r)$, where $N(r)$ ($N_0(r)$) is the distribution function of the spectrum of $L(\lambda)$ ($L_0(\lambda)$) in $\Omega(\theta,\rho)$ ($\rho\geqslant R$). This result implies generalizations of theorems of Keldysh on the asymptotic behavior of the spectrum of a polynomial operator pencil.
Bibliography: 14 titles.
Received: 23.07.1981
Citation:
A. S. Markus, V. I. Matsaev, “A theorem on comparison of spectra, and spectral asymptotics for a Keldysh pencil”, Mat. Sb. (N.S.), 123(165):3 (1984), 391–406; Math. USSR-Sb., 51:2 (1985), 389–404
Linking options:
https://www.mathnet.ru/eng/sm2027https://doi.org/10.1070/SM1985v051n02ABEH002865 https://www.mathnet.ru/eng/sm/v165/i3/p391
|
Statistics & downloads: |
Abstract page: | 646 | Russian version PDF: | 188 | English version PDF: | 21 | References: | 80 |
|