Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 1, Pages 131–140
DOI: https://doi.org/10.1070/SM1987v056n01ABEH003028
(Mi sm2022)
 

Nonlocal almost differential operators and interpolation by functions with sparse spectrum

P. P. Kargaev
References:
Abstract: Let $k$ be a measurable function on $\mathbf R$. Define an operator $\mathscr L_k\colon f\to\mathscr F^{-1}(k\mathscr F(f))$, where $f\in L^2(\mathbf R)$ and $\mathscr F$ is the Fourier transform. Let $\mathscr D_k=\{f\in L^2(\mathbf R):k\mathscr F(f)\in L^2(\mathbf R)\}$ be its domain. The operator $\mathscr L_k$ is called local if $f|E=0$ implies $\mathscr L_k(f)|E=0$ for $E\subset\mathbf R$ with $\operatorname{mes} E>0$. An entire function $g$ of order zero is constructed for which the operator $\mathscr L_g$ is not local. Let $W$ be the Wiener algebra of absolutely convergent trigonometric series. We prove a theorem on correction in the spirit of Luzin's theorem: a condition is exhibited on a set $A$ of integers under which each function of $W$ can be corrected on a set of arbitrarily small measure so that the spectrum of the corrected function (also in $W$) is contained in $A$.
Bibliography: 7 titles.
Received: 05.05.1984
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1985, Volume 128(170), Number 1(9), Pages 133–142
Bibliographic databases:
UDC: 517.53
MSC: Primary 47B38; Secondary 42A15, 46E20, 31A15, 30D60
Language: English
Original paper language: Russian
Citation: P. P. Kargaev, “Nonlocal almost differential operators and interpolation by functions with sparse spectrum”, Mat. Sb. (N.S.), 128(170):1(9) (1985), 133–142; Math. USSR-Sb., 56:1 (1987), 131–140
Citation in format AMSBIB
\Bibitem{Kar85}
\by P.~P.~Kargaev
\paper Nonlocal almost differential operators and interpolation by functions with sparse spectrum
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 128(170)
\issue 1(9)
\pages 133--142
\mathnet{http://mi.mathnet.ru/sm2022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=805700}
\zmath{https://zbmath.org/?q=an:0622.42007}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 1
\pages 131--140
\crossref{https://doi.org/10.1070/SM1987v056n01ABEH003028}
Linking options:
  • https://www.mathnet.ru/eng/sm2022
  • https://doi.org/10.1070/SM1987v056n01ABEH003028
  • https://www.mathnet.ru/eng/sm/v170/i1/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:241
    Russian version PDF:78
    English version PDF:7
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024