Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 1, Pages 19–32
DOI: https://doi.org/10.1070/SM1987v056n01ABEH003021
(Mi sm2015)
 

This article is cited in 4 scientific papers (total in 4 papers)

Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a field of positive characteristic

A. N. Panov
References:
Abstract: The irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over an algebraically closed field of characteristic $p>n$ are described. It is proved that an irreducible representation has maximal dimension only if its central character is a nonsingular point of the Zassenhaus manifold.
Bibliography: 7 titles.
Received: 30.05.1984
Bibliographic databases:
UDC: 512.554
MSC: Primary 17B10; Secondary 17B50, 17B35
Language: English
Original paper language: Russian
Citation: A. N. Panov, “Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a field of positive characteristic”, Math. USSR-Sb., 56:1 (1987), 19–32
Citation in format AMSBIB
\Bibitem{Pan85}
\by A.~N.~Panov
\paper Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a~field of positive characteristic
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/eng/sm2015}
\crossref{https://doi.org/10.1070/SM1987v056n01ABEH003021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=805693}
\zmath{https://zbmath.org/?q=an:0603.17008|0585.17009}
Linking options:
  • https://www.mathnet.ru/eng/sm2015
  • https://doi.org/10.1070/SM1987v056n01ABEH003021
  • https://www.mathnet.ru/eng/sm/v170/i1/p21
  • This publication is cited in the following 4 articles:
    1. K.A. Brown, K.R. Goodearl, “Homological Aspects of Noetherian PI Hopf Algebras and Irreducible Modules of Maximal Dimension”, Journal of Algebra, 198:1 (1997), 240  crossref  mathscinet  zmath
    2. Alexander Premet, “Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture”, Invent math, 121:1 (1995), 79  crossref  mathscinet  zmath  isi
    3. A. N. Panov, “Irreducible representations of maximal dimension of simple Lie algrbras over a field of positive characteristic”, Funct. Anal. Appl., 23:3 (1989), 240–241  mathnet  crossref  mathscinet  zmath  isi
    4. Lev F., “Modular-Representations as a Possible Basis of Finite Physics”, J. Math. Phys., 30:9 (1989), 1985–1998  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:490
    Russian version PDF:141
    English version PDF:117
    References:53
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025