Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 55, Issue 2, Pages 437–465
DOI: https://doi.org/10.1070/SM1986v055n02ABEH003013
(Mi sm2007)
 

This article is cited in 21 scientific papers (total in 21 papers)

The linear theory of Landau damping

V. P. Maslov, M. V. Fedoryuk
References:
Abstract: The one-dimensional system of Vlasov equations linearized at the stationary solution of the nonlinear system is considered. A rigorous theory of Landau damping is presented. A new integral equation with a shift for the electric field is derived in a more general case, and the uniqueness of its solution is proved. A quasiclassical approximation for the linear system of Vlasov equations is obtained.
Bibliography: 15 titles.
Received: 03.04.1984
Bibliographic databases:
UDC: 517.98
MSC: 82A45
Language: English
Original paper language: Russian
Citation: V. P. Maslov, M. V. Fedoryuk, “The linear theory of Landau damping”, Math. USSR-Sb., 55:2 (1986), 437–465
Citation in format AMSBIB
\Bibitem{MasFed85}
\by V.~P.~Maslov, M.~V.~Fedoryuk
\paper The linear theory of Landau damping
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 2
\pages 437--465
\mathnet{http://mi.mathnet.ru/eng/sm2007}
\crossref{https://doi.org/10.1070/SM1986v055n02ABEH003013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=806510}
\zmath{https://zbmath.org/?q=an:0662.35035|0589.35042}
Linking options:
  • https://www.mathnet.ru/eng/sm2007
  • https://doi.org/10.1070/SM1986v055n02ABEH003013
  • https://www.mathnet.ru/eng/sm/v169/i4/p445
  • This publication is cited in the following 21 articles:
    1. S. A. Stepin, A. G. Tarasov, “Dispersion relation in the kinetic model of collisionless plasma”, Theoret. and Math. Phys., 210:3 (2022), 386–397  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. Stepin S.A., “Dispersion Relationship and Spectrum in the Collisionless Plasma Kinetic Model”, Russ. J. Math. Phys., 28:1 (2021), 107–120  crossref  isi
    3. Valery V. Kozlov, “Nonequilibrium Statistical Mechanics of Weakly Ergodic Systems”, Regul. Chaotic Dyn., 25:6 (2020), 674–688  mathnet  crossref  mathscinet
    4. S. A. Stepin, “Schur complement and continuous spectrum in a kinetic plasma model”, Dokl. Math., 101:3 (2020), 231–234  mathnet  crossref  crossref  zmath  elib
    5. A. L. Skubachevskii, Y. Tsuzuki, “Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space”, Comput. Math. Math. Phys., 57:3 (2017), 541–557  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. L. Skubachevskii, “Nonlocal Problems for the Vlasov–Poisson Equations in an Infinite Cylinder”, Funct. Anal. Appl., 49:3 (2015), 234–238  mathnet  crossref  crossref  isi  elib
    7. Carlo Lancellotti, “On the Glassey-Schaeffer Estimates for Linear Landau Damping”, Journal of Computational and Theoretical Transport, 44:4-5 (2015), 198  crossref
    8. A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russian Math. Surveys, 69:2 (2014), 291–330  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Barre J., Yamaguchi Y.Y., “On Algebraic Damping Close to Inhomogeneous Vlasov Equilibria in Multi-Dimensional Spaces”, J. Phys. A-Math. Theor., 46:22 (2013), 225501  crossref  mathscinet  zmath  adsnasa  isi
    10. R.E. Heath, I.M. Gamba, P.J. Morrison, C. Michler, “A discontinuous Galerkin method for the Vlasov–Poisson system”, Journal of Computational Physics, 2011  crossref  mathscinet
    11. Barre J., Olivetti A., Yamaguchi Y.Y., “Algebraic Damping in the One-Dimensional Vlasov Equation”, J. Phys. A-Math. Theor., 44:40 (2011), 405502  crossref  mathscinet  zmath  isi
    12. Mouhot C., Villani C., “On Landau Damping”, Acta Math., 207:1 (2011), 29–201  crossref  mathscinet  zmath  isi  elib
    13. Kinetic Boltzmann, Vlasov and Related Equations, 2011, 289  crossref
    14. J. J. Podesta, “Transient growth in stable linearized Vlasov–Maxwell plasmas”, Phys Plasmas, 17:12 (2010), 122101  crossref  elib
    15. Mouhot C., Villani C., “Landau Damping”, J. Math. Phys., 51:1 (2010), 015204  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Mei-Qin Zhan, “Non-decay results for linear transport equations”, Applied Mathematics Letters, 20:11 (2007), 1151  crossref  mathscinet  zmath
    17. Tie Zhou, Yan Guo, Chi-Wang Shu, “Numerical study on Landau damping”, Physica D: Nonlinear Phenomena, 157:4 (2001), 322  crossref
    18. Mei-Qin Zhan, “A non-decay result for solutions to the linearized relativistic Valsov equations”, Nonlinear Analysis: Theory, Methods & Applications, 42:5 (2000), 751  crossref  mathscinet  zmath
    19. Caglioti E., Maffei C., “Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle”, J. Stat. Phys., 92:1-2 (1998), 301–323  crossref  mathscinet  zmath  isi
    20. Robert Glassey, Jack Schaeffer, “On time decay rates in Landau damping”, Communications in Partial Differential Equations, 20:3-4 (1995), 647  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1103
    Russian version PDF:452
    English version PDF:43
    References:125
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025