Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 9, Pages 1341–1350
DOI: https://doi.org/10.1070/SM2007v198n09ABEH003886
(Mi sm1984)
 

This article is cited in 8 scientific papers (total in 8 papers)

Homogeneous conservative Wiener–Hopf equation

M. S. Sgibnev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The existence of a $P^*$-solution of the homogeneous generalized Wiener–Hopf equation
$$ S(x)=\int_{-\infty}^xS(x-y)\,F(dy),\qquad x\geqslant0, $$
is proved, where $F$ is a probability distribution of recurrent type in $\mathbb R$. Asymptotic properties of this solution are established.
Bibliography: 10 titles.
Received: 18.07.2006 and 14.03.2007
Bibliographic databases:
UDC: 517.968+519.21
MSC: Primary 45E10; Secondary 60G50, 60K05
Language: English
Original paper language: Russian
Citation: M. S. Sgibnev, “Homogeneous conservative Wiener–Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350
Citation in format AMSBIB
\Bibitem{Sgi07}
\by M.~S.~Sgibnev
\paper Homogeneous conservative Wiener--Hopf equation
\jour Sb. Math.
\yr 2007
\vol 198
\issue 9
\pages 1341--1350
\mathnet{http://mi.mathnet.ru//eng/sm1984}
\crossref{https://doi.org/10.1070/SM2007v198n09ABEH003886}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360794}
\zmath{https://zbmath.org/?q=an:1143.45001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252573100007}
\elib{https://elibrary.ru/item.asp?id=9557508}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38749084492}
Linking options:
  • https://www.mathnet.ru/eng/sm1984
  • https://doi.org/10.1070/SM2007v198n09ABEH003886
  • https://www.mathnet.ru/eng/sm/v198/i9/p123
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024