|
This article is cited in 8 scientific papers (total in 8 papers)
Homogeneous conservative Wiener–Hopf equation
M. S. Sgibnev Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
The existence of a $P^*$-solution of the homogeneous generalized Wiener–Hopf equation
$$
S(x)=\int_{-\infty}^xS(x-y)\,F(dy),\qquad x\geqslant0,
$$
is proved, where $F$ is a probability distribution of recurrent type in $\mathbb R$.
Asymptotic properties of this solution are established.
Bibliography: 10 titles.
Received: 18.07.2006 and 14.03.2007
Citation:
M. S. Sgibnev, “Homogeneous conservative Wiener–Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350
Linking options:
https://www.mathnet.ru/eng/sm1984https://doi.org/10.1070/SM2007v198n09ABEH003886 https://www.mathnet.ru/eng/sm/v198/i9/p123
|
|