Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 51, Issue 1, Pages 1–8
DOI: https://doi.org/10.1070/SM1985v051n01ABEH002729
(Mi sm1979)
 

This article is cited in 2 scientific papers (total in 3 papers)

The domain of convergence of series of generalized exponentials

A. F. Leont'ev
References:
Abstract: Let $f(z)$ be an entire function of exponential type and of completely regular growth, let $\gamma(t)$ be the Borel transform of $f(z)$, let $\overline D$ be the smallest closed convex set containing all the singular points of $\gamma(t)$, with $\overline D\ne\{0\}$, and let $\{\lambda_n\}$ be a sequence of complex numbers such that
$$ \lim_{n\to\infty}\frac{\ln n}{\lambda_n}=0. $$

We ask for the domain of convergence of the series
\begin{equation} \sum_{n=1}^\infty A_nf(\lambda_nz). \end{equation}

Let $G$ be the open set in which (1) converges uniformly. It is proved that 1) if $0\not\in\partial\overline D$ then $G$ is convex, and 2) if $0\in\overline D$ and $0\in G$, then $G$ is also convex. Generally speaking, $G$ cannot be an arbitrary convex set. It is shown that $G$ can be an arbitrary convex set with $0\in\overline G$, if and only if the singular points of $\gamma(t)$ all lie on a line segment with one end at the origin.
Bibliography: 2 titles.
Received: 31.05.1983
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1984, Volume 123(165), Number 1, Pages 3–10
Bibliographic databases:
UDC: 517.53
MSC: 30B50
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “The domain of convergence of series of generalized exponentials”, Mat. Sb. (N.S.), 123(165):1 (1984), 3–10; Math. USSR-Sb., 51:1 (1985), 1–8
Citation in format AMSBIB
\Bibitem{Leo84}
\by A.~F.~Leont'ev
\paper The domain of convergence of series of generalized exponentials
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 123(165)
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/sm1979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=728926}
\zmath{https://zbmath.org/?q=an:0573.30003}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002729}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987M206800001}
Linking options:
  • https://www.mathnet.ru/eng/sm1979
  • https://doi.org/10.1070/SM1985v051n01ABEH002729
  • https://www.mathnet.ru/eng/sm/v165/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:506
    Russian version PDF:93
    English version PDF:7
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024