Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 55, Issue 1, Pages 273–283
DOI: https://doi.org/10.1070/SM1986v055n01ABEH003004
(Mi sm1970)
 

Free subgroups and compact elements of connected Lie groups

M. I. Kabenyuk
References:
Abstract: Let $\Omega_G$ be the set of compact (i.e., contained in some compact subgroup) elements of a topological group $G$, and let $\overline{\Omega}_G$ be its closure. The following assertions are proved:
Theorem 1. A compact connected semisimple Lie group $G$ has a free dense subgroup each of whose nonidentity elements is a generator of a maximal torus in $G$.
Theorem 2. {\it Suppose that a connected Lie group $G$ has no nontrivial compact elements in its center and coincides with the closure of its commutator group, and let $\mathscr{G}$ be its Lie algebra. The following conditions are equivalent:
{(i)} $\overline{\Omega}_G = G$.
{(ii)} $G$ has a dense subgroup of compact elements.
{(iii)} $\mathscr{G} = \mathscr{S} \oplus\mathscr{V}$, where $\mathscr{V}$ is a nilpotent ideal and $\mathscr{S}$ is a semisimple compact algebra whose adjoint action on $\mathscr{V}$ does not have a zero weight.
{(iv)} $G=SV$, where $V$ is a nilpotent connected simply connected normal subgroup and $S$ is a semisimple compact connected subgroup whose center $Z(S)$ acts (by conjugations) regularly on $V$.}
Corollary. {\it A locally compact connected group $G$ that coincides with the closure of its commutator group has a dense subgroup of compact elements if and only if $\overline{\Omega}_G = G$.}
Bibliography: 16 titles.
Received: 09.07.1983 and 19.10.1984
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1985, Volume 127(169), Number 2(6), Pages 272–283
Bibliographic databases:
UDC: 512.5
MSC: Primary 22E20; Secondary 17B10, 22B05, 22C05, 22E25, 22E46
Language: English
Original paper language: Russian
Citation: M. I. Kabenyuk, “Free subgroups and compact elements of connected Lie groups”, Mat. Sb. (N.S.), 127(169):2(6) (1985), 272–283; Math. USSR-Sb., 55:1 (1986), 273–283
Citation in format AMSBIB
\Bibitem{Kab85}
\by M.~I.~Kabenyuk
\paper Free subgroups and compact elements of connected Lie groups
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 127(169)
\issue 2(6)
\pages 272--283
\mathnet{http://mi.mathnet.ru/sm1970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=792443}
\zmath{https://zbmath.org/?q=an:0604.22008|0579.22009}
\transl
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 273--283
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH003004}
Linking options:
  • https://www.mathnet.ru/eng/sm1970
  • https://doi.org/10.1070/SM1986v055n01ABEH003004
  • https://www.mathnet.ru/eng/sm/v169/i2/p272
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:344
    Russian version PDF:88
    English version PDF:15
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024