Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 55, Issue 1, Pages 1–18
DOI: https://doi.org/10.1070/SM1986v055n01ABEH002988
(Mi sm1954)
 

This article is cited in 23 scientific papers (total in 23 papers)

Classes of analytic functions determined by best rational approximations in Hp

A. A. Pekarskii
References:
Abstract: Let Rn(f,Hp) be the best approximation to the function f in the Hardy space Hp by rational functions of degree at most n1. It is shown that, for example, fHp (1<p<) satisfies the condition k=0(2kαR2k(f,Hp))σ< (α>0, σ=(α+p1)1) if and only if f belongs to the Hardy–Besov space Bασ. Rational approximation is also considered in Hp (p1) and H. Some applications of the results are given.
Bibliography: 29 titles.
Received: 01.11.1983 and 14.11.1984
Bibliographic databases:
UDC: 517.53
MSC: 30E10, 30D55, 30E05
Language: English
Original paper language: Russian
Citation: A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in Hp”, Math. USSR-Sb., 55:1 (1986), 1–18
Citation in format AMSBIB
\Bibitem{Pek85}
\by A.~A.~Pekarskii
\paper Classes of analytic functions determined by best rational approximations in~$H_p$
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 1--18
\mathnet{http://mi.mathnet.ru/eng/sm1954}
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH002988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791314}
\zmath{https://zbmath.org/?q=an:0593.30040|0578.30032}
Linking options:
  • https://www.mathnet.ru/eng/sm1954
  • https://doi.org/10.1070/SM1986v055n01ABEH002988
  • https://www.mathnet.ru/eng/sm/v169/i1/p3
  • This publication is cited in the following 23 articles:
    1. V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1 (2024), 1–52  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. A. B. Aleksandrov, V. V. Peller, “Triangular projection on $\boldsymbol{S}_p,~0<p<1$, as $p$ approaches $1$”, St. Petersburg Math. J., 35:6 (2024), 897–906  mathnet  crossref
    3. T. S. Mardvilko, A. A. Pekarskii, “Primenenie deistvitelnogo prostranstva Khardi-Soboleva na pryamoi dlya issledovaniya skorosti ravnomernykh ratsionalnykh priblizhenii funktsii”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 3 (2022), 16–36  mathnet  crossref  mathscinet
    4. Alexander Pushnitski, Dmitri Yafaev, “Best Rational Approximation of Functions with Logarithmic Singularities”, Constr Approx, 46:2 (2017), 243  crossref
    5. A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. A. A. Pekarskii, “Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations”, Sb. Math., 206:2 (2015), 333–340  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. T. S. Mardvilko, A. A. Pekarskii, “Direct and inverse theorems of rational approximation in the Bergman space”, Sb. Math., 202:9 (2011), 1327–1346  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. P. Starovoitov, “Rational Approximations of Riemann–Liouville and Weyl Fractional Integrals”, Math. Notes, 78:3 (2005), 391–402  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. Daniel Barlet, Ahmed Jeddi, Real And Complex Singularities, 2003  crossref
    10. Michiel Hazewinkel, Encyclopaedia of Mathematics, 2000, 249  crossref
    11. Evsey Dyn'kin, Complex Analysis, Operators, and Related Topics, 2000, 77  crossref
    12. V. L. Kreptogorskii, “Interpolation and embedding theorems for quasinormed Besov spaces”, Russian Math. (Iz. VUZ), 43:7 (1999), 21–26  mathnet  mathscinet  zmath  elib
    13. Rovba E., Rusak V., “On Approximation Rate by Interpolating Rational Operators with Ordered Poles”, Dokl. Akad. Nauk Belarusi, 41:6 (1997), 21–24  mathscinet  zmath  isi
    14. V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Peetre J. Karlsson J., “Rational Approximation-Analysis of the Work of Pekarskii”, Rocky Mt. J. Math., 19:1 (1989), 313–333  crossref  mathscinet  zmath  isi
    16. Devore R., Popov V., “Interpolation Spaces and Non-Linear Approximation”, Lect. Notes Math., 1302 (1988), 191–205  crossref  mathscinet  zmath  isi
    17. Petrushev P., “Direct and Converse Theorems for Spline and Rational Approximation and Besov-Spaces”, Lect. Notes Math., 1302 (1988), 363–377  crossref  mathscinet  zmath  isi
    18. A. A. Pekarskii, “Tchebycheff rational approximation in the disk, on the circle, and on a closed interval”, Math. USSR-Sb., 61:1 (1988), 87–102  mathnet  crossref  mathscinet  zmath
    19. S. A. Ivanov, “Best approximations by rational vector-valued functions in Hardy spaces”, Math. USSR-Sb., 61:1 (1988), 137–145  mathnet  crossref  mathscinet  zmath
    20. Pekarskii A., “Direct and Inverse-Theorems of the Rational Approximation and Differential Properties of the Functions”, Dokl. Akad. Nauk Belarusi, 31:6 (1987), 500–503  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:569
    Russian version PDF:183
    English version PDF:21
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025