Abstract:
Let Rn(f,Hp) be the best approximation to the function f in the Hardy space Hp by rational functions of degree at most n−1. It is shown that, for example, f∈Hp (1<p<∞) satisfies the condition ∑∞k=0(2kαR2k(f,Hp))σ<∞ (α>0, σ=(α+p−1)−1) if and only if f belongs to the Hardy–Besov space Bασ. Rational approximation is also considered in Hp (p⩽1) and H∞. Some applications of the results are given.
Bibliography: 29 titles.
\Bibitem{Pek85}
\by A.~A.~Pekarskii
\paper Classes of analytic functions determined by best rational approximations in~$H_p$
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 1--18
\mathnet{http://mi.mathnet.ru/eng/sm1954}
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH002988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791314}
\zmath{https://zbmath.org/?q=an:0593.30040|0578.30032}
Linking options:
https://www.mathnet.ru/eng/sm1954
https://doi.org/10.1070/SM1986v055n01ABEH002988
https://www.mathnet.ru/eng/sm/v169/i1/p3
This publication is cited in the following 23 articles:
V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1 (2024), 1–52
A. B. Aleksandrov, V. V. Peller, “Triangular projection on $\boldsymbol{S}_p,~0<p<1$, as $p$ approaches $1$”, St. Petersburg Math. J., 35:6 (2024), 897–906
T. S. Mardvilko, A. A. Pekarskii, “Primenenie deistvitelnogo prostranstva Khardi-Soboleva na pryamoi dlya issledovaniya skorosti ravnomernykh ratsionalnykh priblizhenii funktsii”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 3 (2022), 16–36
Alexander Pushnitski, Dmitri Yafaev, “Best Rational Approximation of Functions with Logarithmic Singularities”, Constr Approx, 46:2 (2017), 243
A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702
A. A. Pekarskii, “Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations”, Sb. Math., 206:2 (2015), 333–340
T. S. Mardvilko, A. A. Pekarskii, “Direct and inverse theorems of rational approximation in the Bergman space”, Sb. Math., 202:9 (2011), 1327–1346
A. P. Starovoitov, “Rational Approximations of Riemann–Liouville and Weyl Fractional Integrals”, Math. Notes, 78:3 (2005), 391–402
Daniel Barlet, Ahmed Jeddi, Real And Complex Singularities, 2003
Michiel Hazewinkel, Encyclopaedia of Mathematics, 2000, 249
Evsey Dyn'kin, Complex Analysis, Operators, and Related Topics, 2000, 77
V. L. Kreptogorskii, “Interpolation and embedding theorems for quasinormed Besov spaces”, Russian Math. (Iz. VUZ), 43:7 (1999), 21–26
Rovba E., Rusak V., “On Approximation Rate by Interpolating Rational Operators with Ordered Poles”, Dokl. Akad. Nauk Belarusi, 41:6 (1997), 21–24
V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463
Peetre J. Karlsson J., “Rational Approximation-Analysis of the Work of Pekarskii”, Rocky Mt. J. Math., 19:1 (1989), 313–333
Devore R., Popov V., “Interpolation Spaces and Non-Linear Approximation”, Lect. Notes Math., 1302 (1988), 191–205
Petrushev P., “Direct and Converse Theorems for Spline and Rational Approximation and Besov-Spaces”, Lect. Notes Math., 1302 (1988), 363–377
A. A. Pekarskii, “Tchebycheff rational approximation in the disk, on the circle, and on a closed interval”, Math. USSR-Sb., 61:1 (1988), 87–102
S. A. Ivanov, “Best approximations by rational vector-valued functions in Hardy spaces”, Math. USSR-Sb., 61:1 (1988), 137–145
Pekarskii A., “Direct and Inverse-Theorems of the Rational Approximation and Differential Properties of the Functions”, Dokl. Akad. Nauk Belarusi, 31:6 (1987), 500–503