Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 54, Issue 2, Pages 421–455
DOI: https://doi.org/10.1070/SM1986v054n02ABEH002979
(Mi sm1946)
 

This article is cited in 81 scientific papers (total in 81 papers)

On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation

V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii
References:
Abstract: The asymptotic ($t\to+\infty$) behavior of solutions of the Cauchy problem is studied for the semilinear parabolic equation
$$ u_t=\Delta u-u^\beta,\quad t>0,\ x\in R^N;\qquad u(0,x)=u_0(x)\geqslant0,\quad x\in R^N, $$
where $\beta=\mathrm{const}>1$ and $u_0(x)\to0$ as $|x|\to+\infty$. The existence is established of an infinite collection (a continuum) of distinct self-similar solutions of the form $u_A(t,x)=(T+t)^{-1/(\beta-1)}\theta_A(\xi)$, $\xi=|x|/(T+t)^{1/2}$, where the function $\theta_A>0$ satisfies an ordinary differential equation. Conditions for the asymptotic stability of these solutions are established. It is shown that for $\beta\geqslant1+2/N$ there exist solutions of the problem whose behavior as $t\to+\infty$ is described by approximate self-similar solutions (ap.s.-s.s.'s) $u_a(t,x)$ which in the case $\beta>1+2/N$ coincide with a family of self-similar solutions of the heat equation $(u_a)_t=\Delta u_a$, while for $\beta=1+2/N$ and $u_0\in L^1(R^N)$ the ap.s.-s.s. has the form $u_a=[(T+t)\ln(T+t)]^{-N/2}c_N\exp(-|x|^2/4(T+t))$, where $c_N=(N/2)^{N/2}(1+2/N)^{N^2/4}$.
Figures: 2.
Bibliography: 78 titles.
Received: 23.07.1984
Bibliographic databases:
UDC: 517.956
MSC: Primary 35K55, 35K15; Secondary 35K05, 35B35
Language: English
Original paper language: Russian
Citation: V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR-Sb., 54:2 (1986), 421–455
Citation in format AMSBIB
\Bibitem{GalKurSam85}
\by V.~A.~Galaktionov, S.~P.~Kurdyumov, A.~A.~Samarskii
\paper On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation
\jour Math. USSR-Sb.
\yr 1986
\vol 54
\issue 2
\pages 421--455
\mathnet{http://mi.mathnet.ru//eng/sm1946}
\crossref{https://doi.org/10.1070/SM1986v054n02ABEH002979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788082}
\zmath{https://zbmath.org/?q=an:0607.35049}
Linking options:
  • https://www.mathnet.ru/eng/sm1946
  • https://doi.org/10.1070/SM1986v054n02ABEH002979
  • https://www.mathnet.ru/eng/sm/v168/i4/p435
    Erratum
    • Letter to the Editor
      V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii
      Mat. Sb. (N.S.), 1986, 131(173):3(11), 413
    This publication is cited in the following 81 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025