|
This article is cited in 2 scientific papers (total in 2 papers)
On the asymptotic behavior of entire Dirichlet series
O. B. Skaskiv, M. N. Sheremeta
Abstract:
For entire functions $F$ given by Dirichlet series
$$
F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n},\qquad0=\lambda_0<\lambda_1<\cdots<\lambda_n\uparrow+\infty\quad(n\to+\infty),
$$
absolutely convergent in $\mathbf C$ some results are proved which give best possible, or close to best possible, conditions sufficient for the relation
$$
F(s)=(1+o(1))a_\nu e^{s\lambda_\nu}\qquad(s=\sigma+it)
$$
as $\sigma\to+\infty$ outside some set, where $\nu=\nu(\sigma)$ is the central index of the Dirichlet series.
Bibliography: 4 titles.
Received: 27.05.1985
Citation:
O. B. Skaskiv, M. N. Sheremeta, “On the asymptotic behavior of entire Dirichlet series”, Math. USSR-Sb., 59:2 (1988), 379–396
Linking options:
https://www.mathnet.ru/eng/sm1931https://doi.org/10.1070/SM1988v059n02ABEH003141 https://www.mathnet.ru/eng/sm/v173/i3/p385
|
|