Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 59, Issue 1, Pages 155–179
DOI: https://doi.org/10.1070/SM1988v059n01ABEH003129
(Mi sm1914)
 

This article is cited in 2 scientific papers (total in 2 papers)

Homogeneous difference schemes for one-dimensional problems with generalized solutions

K. N. Godev, R. D. Lazarov, V. L. Makarov, A. A. Samarskii
References:
Abstract: Exact and truncated homogeneous difference schemes of arbitrary order of accuracy are constructed and investigated for the one-dimensional second-order equation $(k(x)u'(x))'-q(x)u(x)=-f(x)$, $0<x<1$, with generalized solutions in $W_2^1$. Mathematical tools are developed for studying the accuracy of truncated difference schemes. It is assumed that $k(x)$ is a measurable function, while $q(x)$ and $f(x)$ are generalized derivatives of functions in the class $W_p^\lambda$, $0<\lambda\leqslant1$, $2\leqslant p<\infty$; this allows one to include the case in which $q(x)$ and $f(x)$ are $\delta$-functions. It is shown that truncated schemes of $m$th order have accuracy $O(h^{2(m+1)-n})$, where $h$ is the mesh step size and $n$ a number depending on the exponents $\lambda_q$, $\lambda_f$, $p_q$ and $p_f$. In the case of piecewise smooth coefficients $n=0$, and the estimates obtained coincide with results of the theory of homogeneous difference schemes of Tikhonov and Samarskii.
Bibliography: 13 titles.
Received: 10.10.1985
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1986, Volume 131(173), Number 2(10), Pages 159–184
Bibliographic databases:
UDC: 519.632
MSC: Primary 65L10, 65L50; Secondary 34B27
Language: English
Original paper language: Russian
Citation: K. N. Godev, R. D. Lazarov, V. L. Makarov, A. A. Samarskii, “Homogeneous difference schemes for one-dimensional problems with generalized solutions”, Mat. Sb. (N.S.), 131(173):2(10) (1986), 159–184; Math. USSR-Sb., 59:1 (1988), 155–179
Citation in format AMSBIB
\Bibitem{GodLazMak86}
\by K.~N.~Godev, R.~D.~Lazarov, V.~L.~Makarov, A.~A.~Samarskii
\paper Homogeneous difference schemes for one-dimensional problems with generalized solutions
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 131(173)
\issue 2(10)
\pages 159--184
\mathnet{http://mi.mathnet.ru/sm1914}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=865933}
\zmath{https://zbmath.org/?q=an:0635.65095|0621.65094}
\transl
\jour Math. USSR-Sb.
\yr 1988
\vol 59
\issue 1
\pages 155--179
\crossref{https://doi.org/10.1070/SM1988v059n01ABEH003129}
Linking options:
  • https://www.mathnet.ru/eng/sm1914
  • https://doi.org/10.1070/SM1988v059n01ABEH003129
  • https://www.mathnet.ru/eng/sm/v173/i2/p159
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:534
    Russian version PDF:155
    English version PDF:15
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024