Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 59, Issue 1, Pages 1–23
DOI: https://doi.org/10.1070/SM1988v059n01ABEH003121
(Mi sm1897)
 

This article is cited in 28 scientific papers (total in 28 papers)

Inverse problems of spectral analysis for the Sturm–Liouville operators with nonseparated boundary conditions

O. A. Plaksina
References:
Abstract: This paper is devoted to the study of boundary value problems generated by the Sturm–Liouville equation
$$ -y''(x)+q(x)y(x)=\lambda^2y(x) $$
on the interval $[0,\pi]$, with real potential $q(x)\in L_2[0,\pi]$ and with general selfadjoint boundary conditions
$$ a_{11}y(0)+a_{12}y'(0)+a_{13}y(\pi)+a_{14}y'(\pi)=0,\quad a_{21}y(0)+a_{22}y'(0)+a_{23}y(\pi)+a_{24}y'(\pi)=0. $$

For all such problems a characterization of the spectrum is found, i.e. complementary spectral data which, together with the spectrum, allow one to recover the boundary value problem uniquely.
Figures: 4.
Bibliography: 18 titles.
Received: 03.10.1984 and 08.10.1985
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1986, Volume 131(173), Number 1(9), Pages 3–26
Bibliographic databases:
UDC: 517.9
MSC: Primary 34B25, 34B05; Secondary 34E05, 30C20
Language: English
Original paper language: Russian
Citation: O. A. Plaksina, “Inverse problems of spectral analysis for the Sturm–Liouville operators with nonseparated boundary conditions”, Mat. Sb. (N.S.), 131(173):1(9) (1986), 3–26; Math. USSR-Sb., 59:1 (1988), 1–23
Citation in format AMSBIB
\Bibitem{Pla86}
\by O.~A.~Plaksina
\paper Inverse problems of spectral analysis for the Sturm--Liouville operators with nonseparated boundary conditions
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 131(173)
\issue 1(9)
\pages 3--26
\mathnet{http://mi.mathnet.ru/sm1897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=868598}
\zmath{https://zbmath.org/?q=an:0647.34020|0631.34028}
\transl
\jour Math. USSR-Sb.
\yr 1988
\vol 59
\issue 1
\pages 1--23
\crossref{https://doi.org/10.1070/SM1988v059n01ABEH003121}
Linking options:
  • https://www.mathnet.ru/eng/sm1897
  • https://doi.org/10.1070/SM1988v059n01ABEH003121
  • https://www.mathnet.ru/eng/sm/v173/i1/p3
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:419
    Russian version PDF:144
    English version PDF:19
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024