|
This article is cited in 16 scientific papers (total in 16 papers)
Quasianalytical classes of functions in convex domains
R. S. Yulmukhametov
Abstract:
Let $D$ be a bounded convex domain lying in the left-hand half-plane, with $0\in\overline D$. A class $H(D,M_n)$, consisting of functions analytic in $D$ and satisfying the inequalities
$$
\max_{z\in D}|f^{(n)}(z)|\leqslant C_fM_n,\qquad n=0,1,\dots,
$$
is said to be quasianalytic at $z=0$ if $H(D,M_n)$ contains no functions that vanish with all their derivatives at $z=0$.
Let $h(\varphi)=\max_{\lambda\in D}\operatorname{Re}\lambda e^{i\varphi}$ and $h(\varphi)=0$, $\varphi\in[\sigma_-,\sigma_+]$, and let
\begin{gather*}
\Delta_+(\alpha)=\sqrt{\alpha-\sigma_+}\biggl(h'(\alpha)+\int^\alpha_{\sigma_+}h(\theta)\,d\theta\biggr),\qquad\sigma_+<\alpha<\frac\pi2,
\\
\Delta_-(\alpha)=-\sqrt{\sigma_--\alpha}\biggl(h'(\alpha)+\int_{\sigma_-}^\alpha h(\theta)\,d\theta\biggr),\qquad-\frac\pi2<\alpha<\sigma_-,
\\
v_1(x)=\exp\int_{x_1}^x\frac{2\pi-\Delta_+^{-1}(y)+\Delta_-^{-1}(y)}{-\pi+\Delta_+^{-1}(y)-\Delta_-^{-1}(y)}\cdot\frac{dy}y,\qquad x\to0,\quad x_1>0.
\end{gather*}
It is shown that the condition
$$
\int_1^\infty\frac{\ln T(r)}{v(r)\cdot r^2}\,dr=+\infty,
$$
where $T(r)=\sup r^nM_n^{-1}$ is the trace function of the sequence $(M_n)$, and $v(r)$ is the inverse of $v_1(x)$, is necessary and sufficient for the quasianalyticity of $H(D,M_n)$.
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when $D=\bigl\{z:|\arg z|<\frac\pi{2\gamma}\bigr\}$ the theorem follows from Salinas's results of 1955. For $D=\{z:|z+1|=1\}$ the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.
Received: 30.04.1985
Citation:
R. S. Yulmukhametov, “Quasianalytical classes of functions in convex domains”, Math. USSR-Sb., 58:2 (1987), 505–523
Linking options:
https://www.mathnet.ru/eng/sm1889https://doi.org/10.1070/SM1987v058n02ABEH003117 https://www.mathnet.ru/eng/sm/v172/i4/p500
|
Statistics & downloads: |
Abstract page: | 635 | Russian version PDF: | 169 | English version PDF: | 20 | References: | 64 |
|