Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 58, Issue 2, Pages 505–523
DOI: https://doi.org/10.1070/SM1987v058n02ABEH003117
(Mi sm1889)
 

This article is cited in 16 scientific papers (total in 16 papers)

Quasianalytical classes of functions in convex domains

R. S. Yulmukhametov
References:
Abstract: Let $D$ be a bounded convex domain lying in the left-hand half-plane, with $0\in\overline D$. A class $H(D,M_n)$, consisting of functions analytic in $D$ and satisfying the inequalities
$$ \max_{z\in D}|f^{(n)}(z)|\leqslant C_fM_n,\qquad n=0,1,\dots, $$
is said to be quasianalytic at $z=0$ if $H(D,M_n)$ contains no functions that vanish with all their derivatives at $z=0$.
Let $h(\varphi)=\max_{\lambda\in D}\operatorname{Re}\lambda e^{i\varphi}$ and $h(\varphi)=0$, $\varphi\in[\sigma_-,\sigma_+]$, and let
\begin{gather*} \Delta_+(\alpha)=\sqrt{\alpha-\sigma_+}\biggl(h'(\alpha)+\int^\alpha_{\sigma_+}h(\theta)\,d\theta\biggr),\qquad\sigma_+<\alpha<\frac\pi2, \\ \Delta_-(\alpha)=-\sqrt{\sigma_--\alpha}\biggl(h'(\alpha)+\int_{\sigma_-}^\alpha h(\theta)\,d\theta\biggr),\qquad-\frac\pi2<\alpha<\sigma_-, \\ v_1(x)=\exp\int_{x_1}^x\frac{2\pi-\Delta_+^{-1}(y)+\Delta_-^{-1}(y)}{-\pi+\Delta_+^{-1}(y)-\Delta_-^{-1}(y)}\cdot\frac{dy}y,\qquad x\to0,\quad x_1>0. \end{gather*}
It is shown that the condition
$$ \int_1^\infty\frac{\ln T(r)}{v(r)\cdot r^2}\,dr=+\infty, $$
where $T(r)=\sup r^nM_n^{-1}$ is the trace function of the sequence $(M_n)$, and $v(r)$ is the inverse of $v_1(x)$, is necessary and sufficient for the quasianalyticity of $H(D,M_n)$.
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when $D=\bigl\{z:|\arg z|<\frac\pi{2\gamma}\bigr\}$ the theorem follows from Salinas's results of 1955. For $D=\{z:|z+1|=1\}$ the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.
Received: 30.04.1985
Bibliographic databases:
UDC: 517.548.3
MSC: 26E10, 30B60, 30E10
Language: English
Original paper language: Russian
Citation: R. S. Yulmukhametov, “Quasianalytical classes of functions in convex domains”, Math. USSR-Sb., 58:2 (1987), 505–523
Citation in format AMSBIB
\Bibitem{Yul86}
\by R.~S.~Yulmukhametov
\paper Quasianalytical classes of functions in convex domains
\jour Math. USSR-Sb.
\yr 1987
\vol 58
\issue 2
\pages 505--523
\mathnet{http://mi.mathnet.ru//eng/sm1889}
\crossref{https://doi.org/10.1070/SM1987v058n02ABEH003117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=867340}
\zmath{https://zbmath.org/?q=an:0625.30037|0617.30041}
Linking options:
  • https://www.mathnet.ru/eng/sm1889
  • https://doi.org/10.1070/SM1987v058n02ABEH003117
  • https://www.mathnet.ru/eng/sm/v172/i4/p500
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:635
    Russian version PDF:169
    English version PDF:20
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024