Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 60, Issue 2, Pages 427–436
DOI: https://doi.org/10.1070/SM1988v060n02ABEH003179
(Mi sm1878)
 

This article is cited in 1 scientific paper (total in 1 paper)

On functions of bounded variation that are determined by restriction to a semiaxi

A. M. Ulanovskii
References:
Abstract: Let F(x), xR, be a function of bounded variation on the line. This paper investigates whether convolutions of the form F(x/a1)F(x/an), n2, are uniquely determined from their values on the semiaxis x(,0). As a corollary to one of the results a conjecture of Kruglov is proved: if F(x) is a distribution function, Φ(x) is the standard normal distribution function, and a1>0,,an>0, n2, then the equality
F(xa1)F(xan)=Φ(x),x(,0),
implies that F(x)Φ((a21++a2n)1/2x).
Bibliography: 10 titles.
Received: 15.12.1985
Bibliographic databases:
UDC: 517.44+519.21
MSC: Primary 26A45, 60E99; Secondary 26A42, 60E07
Language: English
Original paper language: Russian
Citation: A. M. Ulanovskii, “On functions of bounded variation that are determined by restriction to a semiaxi”, Math. USSR-Sb., 60:2 (1988), 427–436
Citation in format AMSBIB
\Bibitem{Ula87}
\by A.~M.~Ulanovskii
\paper On~functions of bounded variation that are determined by restriction to a~semiaxi
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 2
\pages 427--436
\mathnet{http://mi.mathnet.ru/eng/sm1878}
\crossref{https://doi.org/10.1070/SM1988v060n02ABEH003179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=889603}
\zmath{https://zbmath.org/?q=an:0663.30003|0631.30003}
Linking options:
  • https://www.mathnet.ru/eng/sm1878
  • https://doi.org/10.1070/SM1988v060n02ABEH003179
  • https://www.mathnet.ru/eng/sm/v174/i3/p434
  • This publication is cited in the following 1 articles:
    1. Alexander Ulanovskii, “On a Uniqueness Property of n-th Convolutions and Extensions of Titchmarsh Convolution Theorem”, Z. mat. fiz. anal. geom., 20:4 (2024), 525  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:282
    Russian version PDF:79
    English version PDF:11
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025