Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 60, Issue 2, Pages 347–364
DOI: https://doi.org/10.1070/SM1988v060n02ABEH003173
(Mi sm1861)
 

This article is cited in 10 scientific papers (total in 10 papers)

On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$

V. V. Morzhakov
References:
Abstract: Let $D$ be a convex domain and $K$ a convex compact set in $\mathbf C^l$; let $H(D)$ be the space of analytic functions in $D$, provided with the topology of uniform convergence on compact sets, and $H(K)$ the space of germs of analytic functions on $K$ with the natural inductive limit topology; and let $H'(K)$ be the space dual to $H(K)$. Each functional $T\in H'(K)$ generates a convolution operator $(\check Ty)(z)=T_\zeta(y(z+\zeta))$, $y\in H(D+K)$, $z\in D$, which acts continuously from $H(D+K)$ into $H(D)$. Further let $(\mathscr FT)(z)=T_\zeta(\exp\langle z,\zeta\rangle)$ be the Fourier–Borel transform of the functional $T\in H'(K)$.
In this paper the following theorem is proved:
Theorem. {\it Let $D$ be a bounded convex domain in $\mathbf C^l$ with boundary of class $C^1$ or $D=D_1\times\dots\times D_l,$ where the $D_j$ are bounded planar convex domains with boundaries of class $C^1,$ and let $T\in H'(K)$. In order that $\check T(H(D+K))=H(D)$ it is necessary and sufficient that
{\rm1)} $\mathscr L^*_{\mathscr FT}(\zeta)=h_K(\zeta)$ $\forall\,\zeta\in\mathbf C^l;$
{\rm2)} $(\mathscr FT)(z)$ be a function of completely regular growth in $\mathbf C^l$ in the sense of weak convergence in $D'(\mathbf C^l)$.}
Here $\mathscr L^*_{\mathscr FT}(\zeta)=\varlimsup_{z\to\zeta}\, \varlimsup_{r\to\infty }\frac{\ln |(\mathscr FT)(rz)|}{r}$ is the regularized radial indicator of the entire function $(\mathscr FT)(z)$, and $h_K(\zeta)$ is the support function of the compact set $K$.
Bibliography: 29 titles.
Received: 26.11.1985
Bibliographic databases:
UDC: 517.55
MSC: 32A30, 30D99
Language: English
Original paper language: Russian
Citation: V. V. Morzhakov, “On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$”, Math. USSR-Sb., 60:2 (1988), 347–364
Citation in format AMSBIB
\Bibitem{Mor87}
\by V.~V.~Morzhakov
\paper On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 2
\pages 347--364
\mathnet{http://mi.mathnet.ru//eng/sm1861}
\crossref{https://doi.org/10.1070/SM1988v060n02ABEH003173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=889597}
\zmath{https://zbmath.org/?q=an:0678.46032|0632.46034}
Linking options:
  • https://www.mathnet.ru/eng/sm1861
  • https://doi.org/10.1070/SM1988v060n02ABEH003173
  • https://www.mathnet.ru/eng/sm/v174/i3/p352
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:301
    Russian version PDF:100
    English version PDF:16
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024